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Towards a Minimalist Machine

Sandiway Fong and Jason Ginsburg

2.1 Introduction

With respect to computationalmodeling, theMinimalist Program (MP) (e.g. Chomsky
1995b; 2001 and thereafter), has not lent itself to straightforward formal characteriza-
tion. MP models have undergone a series of methodological and theoretical shifts in
the continual search for a better characterization of the language faculty. Although
computational efficiency is of central concern in cognitive models, a so-called “third
factor” principle, this does not imply that theoretical improvements will necessarily
make for more efficient implementation, as will be discussed in this chapter1 However,
it is important to recognize the computational implications of these shifts, evaluate the
challenges, and adopt appropriate computational architectures. This chapter describes
an efficient architecture that has been implemented and tested on a wider variety of
syntactic phenomena than any comparable system that we know of. We discuss in
detail the reasons for, and consequences of, our architectural choices.

2.2 Free or feature-driven movement

Let us begin with a concrete example of a theoretical shift: movement, or Internal
Merge (IM) in MP terms, has been alternately characterized as being “driven” (e.g.
Chomsky 1995b; 2001) or “free” (e.g. Chomsky 2013; 2015b). By “driven”, we simply
mean that preconditions are placed onmovement.The EPP, or Edge-feature (Chomsky
2001), is an example of a mechanism that can drive and limit displacement. A general
requirement for grammatical feature-matching during IM can also serve the same
purpose. In these theories, nomovementmay take place without featural approval.The
Minimalist Grammar (MG) formalism (Stabler 1997; and much work since) codifies
this feature-driven approach. Note that explicit feature checking is not the only way
to condition displacement; for example, the Minimal Link Condition (MLC) and the
Last Resort rule (Chomsky 1995b) are economy-based conditions that do not involve

1 According to (Chomsky 2005), there are three factors that enter into the growth of the language for the
individual: (i) genetic endowment, (ii) experience, and (iii) principles not specific to the faculty of language.
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2.2 free or feature-driven movement 17

(explicit) feature checking2TheAntilocality proposal of Bošković (2016) is yet another.
Pesetsky and Torrego’s T to C movement is an interesting case of economy that we will
discuss in detail in this chapter because it involves a combination of feature checking
and operation counting. By “free” we simply mean that there are no preconditions on
IM; i.e. by default, constituents are free to displace anywhere without checking first
for permission. Within this framework, a theory that can dispense with EPP/Edge and
other non-substantive features (perhaps invented solely for the purpose of constraining
displacement) carries less “technical baggage” to burden acquisition or biological
endowment. Obviously, since not all possible derivations are admissible; structural
constraints that filter out uninterpretable or ill-formed syntactic objects (SOs) must
appear somewhere “downstream” from Merge. Ideally, these independently- moti-
vated constraints would originate from language-external factors, e.g. the need to
reformat SOs to meet the requirements for exchanging relevant information with
external systems, or from limits on general cognitive architecture. For example, at
the Conceptual–Intensional (CI) interface, Merged objects must be explicitly labeled
(Chomsky 2013; 2015b).Thus, Labeling limits possible phrasalmovement.Third factor
considerations could also limit the range and depth of structures computed3

Let us turn our attention to computational issues for the two types of theories
outlined above. First, a feature-drivenmodel, if sufficiently constrained, can result in an
“efficient” implementation in the sense that SOs can be derived with few, or no, choice
points. Suppose the possible syntactic operations are limited to the following three:
(i) External Set Merge (ESM), (ii) Internal Set Merge (ISM), (iii) External Pair Merge
(EPM)⁴ In the model described here, a machine state (SO, LIs) will consist of a current
SO and an ordered list of (unmerged) lexical items (LIs)⁵ ESM will merge the first LI
H with the current SO α, forming {H, α}. More succinctly, we can write (α, [H, ..]) ↦
({H, α} [..]) (We use the notation [H, ..] to represent a list (or stack) with first (or top)
element H. [..] represents the remainder of the list once H is removed.) ISM identifies
a sub-constituent β in α, forming {β, α}; i.e. (α, [H, ..])↦ ({β, α}, [H, ..]). (We will write
β ⊂ α to indicate that β is a proper sub-constituent of α.) In principle, β could be any
subconstituent of α; however, we use featural identification and locality to limit our
choice to just a single β. For example, the interrogative complementizer CQ will seek a
β[wh], where wh is a feature. We may limit ISM to the closest available β[wh]⁶ Finally,

2 The decision procedure P (described later) contains an implementation of the Last Resort rule.
3 For example, without constraints on IM, we can select any sub-SO for displacement, so the combinatorics of

SO growth becomes a problem. One third-factor hypothesis that can be investigated is that cognitive computation
not only does not support, but actively suppresses, the creation of infinite loops. Further exploration of this issue
falls outside the scope of this chapter.

⁴ We put aside a possible fourth type of operation, Internal PairMerge (IPM). See Richards (2009) and Epstein,
Kitahara, and Seely (2016).

⁵ Our implementation assumes an Oracle that turns a set of LIs into a properly ordered list. This convenient
simplification is purely for efficiency’s sake.

⁶ Of course, by “closest” we mean the nearest structural constituent as defined by the c-command domain,
rather than the nearest compatible constituent in terms of linear order.

jasonmacbookproMain
挿入テキスト
.

jasonmacbookproMain
挿入テキスト
.

jasonmacbookproMain
挿入テキスト

jasonmacbookproMain
挿入テキスト
.

jasonmacbookproMain
挿入テキスト
.

jasonmacbookproMain
挿入テキスト
.

jasonmacbookproMain
挿入テキスト
.



OUP UNCORRECTED PROOF – FIRST PROOF, 11/5/2019, SPi

18 2 towards a minimalist machine

EPMwill form <H, α>, withH as adjunct.⁷ Using the notation introduced above, this is
(α, [H,..])↦ (<H, α> [..]).These are the choices available to themachine. (We put aside
for now the situation that obtains when H is not a simple head, but instead a complex
SO formed earlier in a lower workspace (WS) and placed at the front of the LIs.)

Suppose the machine has a decision procedure P that deterministically selects the
right operation in order for the derivation to converge. If P exists, by always making
the right choice, all other candidate operations can be pruned immediately. This is the
optimal situation from the point of computational minimalization, in terms both of
memory demand and of the number of operations required to converge on the desired
SO. Should P make a wrong choice, the derivation crashes, i.e. fails to converge on a
single SO. In the case where we intend a crash, e.g. to show a SO is underivable from
some particular initial list of heads (LIs), the machine containing P need not show
that there is no combination of available operations to circumvent failure; it simply
needs to fail to advance its derivation at some point (perhaps as early as possible).
An empirically adequate P will produce convergent derivations without backtracking
when started with appropriate LIs, and crash when not. Ideally, P will be able to also
cite a grammatically relevant reason for a crash, not just simply halt.

The Oracle-like knowledge encoded in P will be a combination of well-motivated
linguistic principles, e.g. minimal search, plus (irreducible) ad hoc stipulations.⁸ Let
us define a simple, or “minimal,” P as one that decides on the right operation solely on
the basis of the current state. A more powerful P, e.g. one that employs lookahead
(by precomputing future machine states) or considers prior machine states, e.g. in
Markovian fashion, to decide on the right move, will be deemed architecturally non-
optimal. We describe such a minimal P in the following sections.

A free Merge model cannot entertain the level of determinism described above for
feature-based systems. If Merge is unrestricted, the operations ESM, ISM, and EPM
are active and available at all relevant stages of the computation. Irrelevant operations
must be blocked somewhere downstream. For example, consider a transitive verb
construction {T, {SBJ, {v∗, {V, OBJ}}}, where the subject SBJ is first Merged at the
edge of v∗P. In typical feature-based theories, tense T has an EPP (or Edge) feature.
Assuming minimal search, this triggers ISM to raise SBJ to the surface subject position
(in preference to the object OBJ). In the freeMerge framework, there is no EPP feature;
therefore both {SBJ, {T, {SBJ, {v∗, {V, OBJ}}}} (raising) and {T, {SBJ, {v∗, {V, OBJ}}} (no
raising)will be put forth to beMergedwith the complementizerC.⁹Wemust rely on the
Labeling algorithm at Transfer to the CI interface to rule out the illicit English structure

⁷ Convention: in this chapter, in the ordered pair <α, β>, the first element α always represents the adjunct, and
β the head.

⁸ We speculate (without experimental evidence) that the ad hoc component potentially could be acquired.
In terms of the decision procedure P, currently, we manually sort the available operations: ESM, ISM, and IPM.
(Learning tomore efficiently assemble SOs through experiencewould be the driving principle.) If so, an individual
actually has no ad hoc P to begin with. Instead, it might be created through error-driven exposure to data.

⁹ Notation: strikethrough will be used throughout this chapter to indicate displacement.
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{C, {T, {SBJ, {v∗, {V, OBJ}}}}}, as in Chomsky (2013; 2015b)1⁰ This non-determinism
results in combinatorial explosion that minimal P avoids by design11

2.3 Computational cyclicity

Cyclicity also has important consequences for implementation. First, the notion of
incrementally assembling SOs in strict bottom-up fashion has not always enjoyed
unqualified support in the MP. For example, although it seems to violate the No-
Tampering Condition (NTC) of Chomsky (2008), the notion of syntactic head-to-
head movement (after phrasal movement) reappears from time to time. For example,
Chomsky (2015b) indicates that the root R should raise in {v∗, {R, OBJ}} and form the
amalgam [R-v∗], realized as a reverse-ordered Pair-Merged head-head structure. In
short, from {v∗, {R, OBJ}}, we non-cyclically create {<v∗,R>, {R,OBJ}}12 Simultaneous
(or parallel) IM operating at the Phase level, as in (Chomsky 2008), is another proposal
that seems to violate the idea of the strict cycle at the single-Merge level of granularity.
Let us discuss each of these in turn with implementation of minimal P in mind.

Commitment to a strict version of the cycle results in the simplest possible scheme
for scheduling operations. For example, suppose a head gets just one (and only one)
opportunity, at the time of its first Merge to the current SO, to probe, value, and have
its features valued. Once a head is submerged into a larger SO, the system “forgets”
and never resurrects the “now buried” head for further probing duties. More precisely,
given machine state (SO, [H ..]), Set Merge of H and SO proceeds by first having
(the features of) H probe its intended c-command domain SO, and possibly carry out
operations such as Agree(H, β), where β ⊂ SO. (Recall that SO is the current syntactic
object and H is the first in the list of LIs.) If successful, the new machine state will be
({H, SO}, [..]). We consider H “buried”, and the machine never digs into the current
SO to have buried heads (re-)probe. (Note this does not prevent H from subsequently
being a goal targeted by operations like Agree.) The proposed scheme is the simplest
possible because otherwise would require the system to organize and maintain a list
of delayed-past-Merge probe-goal operations. Bookkeeping of this nature requires
additional memory and computational resources, so we do not consider it for our
minimal P. In fact, whenever we have opportunities to bookkeep, we will pass on

1⁰ An attempt could be made to make a minimal P-type device available in a free Merge model. However, it
is not clear whether this would be technically feasible (or deducible from assumptions) in all possible scenarios
or computational states. Even in our small example above, to forestall speculative (non-)movement, this would
involve building in the knowledge that {T, {SBJ, {v∗, {V, OBJ}}} cannot be labeled unless ISM of something that
shares identical ϕ-features with T happens next (but not ESM or EPM). We must also deduce that the possibility
of ESM is ruled out because ϕ-features in an external constituent cannot satisfy the identity requirement. Finally,
EPM must be ruled out on the grounds that the canonical ϕ-feature sharing configuration would not be achieved.

11 Note that in free Merge, we find echoes ofMove-α, a concept in the earlier Principles-and-Parameters (P&P)
framework (see Chomsky 1981). Move-α implies that syntactic objects of any category may, in principle, undergo
IM. However, the EPP is very much part of the P&P framework; there is no EPP in free Merge.

12 Obviously, the timing of head-to-headmovement is critical if the operation is tomeet the conditions of strict
cyclicity. See also Epstein et al. (2016) and Collins and Stabler (2016) for relevant discussion.
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20 2 towards a minimalist machine

them. (However, as will be explained later, this does not prevent the implementation
of Multiple Agree (Chomsky 2001).)

Consider example (1a): as discussed in Chomsky (2008), both phrases [..]1 and [..]2
must simultaneously raise from the post-verbal object position in (1b) in order to
sidestep a possible violation of the subject island condition. (Compare (1a) with (1e).)

(1) a. Of which car was the driver awarded a prize = (7ii) (Chomsky 2008)
b. [[ofwhich car]1 was [the driver of which car]2 awarded [the driver [of which car]1]2

a prize]
c. {CQ {T, {.. {award, the driver of which car}}}}
d. {[the driver of which car]2, {T, .. {award, [the driver of which car]2 a prize}}
e. ∗Of which car did the driver cause a scandal = (6ii) (Chomsky 2008)

If we take the pre-IM structure to be (1c), it should be apparent that the raising of the
driver of which car to the Edge of T is counter-cyclic. Note that the naïve version, i.e.
raising to the Edge of T first, and forming (1d) before merging interrogative CQ, does
not work. Merge of CQ will trigger probing, but the closest of which car is inside the
subject island. In our implementation, a stack data structure originally introduced for
computational efficiency saves the analysis.

The machine stack K operates as follows:

(2) (i) In machine state (α[!F], [H, ..]), where !F denotes an unvalued feature F and
α[!F] denotes a SO α with unvalued feature F, α[!F] is pushed onto K if α is
no longer the current SO, i.e. stacking is triggered when something is merged
with α[!F].

(ii) When a probe requires a matching goal, it must be found on K, i.e. only the
stack is consulted.

Given (2), if we apply ESM to machine state (α[!F], [H, ..]), we obtain a new machine
state ({H, α[!F]}, [..]), and unvalued feature !F is buried inside the SO ({H, α[!F]}.
To avoid a possibly deep (and expensive) search of the current SO each time a
probe is first Merged, we simply look to the stack for candidate-matching goals.
In a probe-goal model, because the stack (by definition) only contains constituents
with unvalued features, we can be confident we have all the candidates of interest
without examining the current SO. Finally, for maximal computational efficiency, i.e.
eliminating SO search, we can demand that the top element of the stack always contains
the right goal.13

Returning to example (1a), which car was the driver awarded a prize, the DP the
driver of which car lacks Case when it is first Merged as object of the verb root award,

13 Probes search for a particular unvalued feature. If the stack top has cached the right element, there is no
search, and the data structure proposed is maximally efficient. If it does not, the next element down in the stack
can be tested, and so on. A “cache miss” is non-optimal, but a convergent derivation can still be obtained. In
informal testing on our corpus, the first stack element is nearly always the one we want.
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creating SO {award, DP}. Since the DP is no longer the current SO, it goes on the stack.
Proceeding in strict cyclic fashion, we obtain {T, {v, {.. {award, DP}}}}. In our grammar,
T has an Edge feature, and hence the DP raises to form {DP, {T, {v, {.. {award, DP}}}}}.
Next, CQ merges and probes the SO; but as we have outlined above, it actually grabs
the DP initially left on the stack, and the derivation proceeds.1⁴ To be clear, the stack
we have just introduced is not a conceptually necessary component of the architecture.
The notion of a machine stack is not normally part of the formal vocabulary of the
linguist; therefore, it requires some additional justification. We have introduced it as
a computational efficiency measure, largely to sidestep goal search. It happens also to
facilitate parallel Merge of the sort discussed in Chomsky (2008).

At this point, a remark on maintaining computational cyclicity in the face of
paradigmatic shift is in order. Grammatical operations need not always operate in
“lockstep” with the core Merge implementation as sketched above. Although Merge is
the driving force in our implementation—i.e. operations such as Agree and probe-goal
are triggered immediately at first Merge of a head—this “first wave” approach may not
be desirable, or even necessary, from the point of view of empirical coverage or efficient
implementation. An example is Labeling of the sort discussed in Bošković (2016),
where he exploits differences in the timing of Labeling for various phrases to account
for a variety of effects1⁵ Computationally speaking, choices exist here; for example, we
can choose to always label a phrase as soon as possible, e.g. as in Ginsburg (2016), or
delay labeling for some phrases, as in Bošković (2016). Immediate Labeling is Merge-
driven and respects the strict cycle. Delayed Labeling, e.g. until Transfer as proposed
in Chomsky (2015b), can be viewed as non-cyclic, as Labeling is triggered only on
completion of a Phase. Determining the label of deeply buried phrases long after
Merge seems, at first glance, to be computationally inefficient. This is true for largely
deterministic models, but in the case of free Merge, delaying Labeling may actually
be a computational win, simply because large numbers of candidate SOs (introduced
non-deterministically) will be ruled out early anyway. In short, why bother to label for
Transfer if most candidate SOs won’t make it there?

In the system described here, we do not implement algorithmic Labeling; instead, P
deterministically assign a label to each syntactic object at Merge-time. Updating to a
loosely coupled labeling algorithm poses a challenge to our model of quickly-evaluate-
and-forget. One way to reconcile the two paradigms for future implementation is to
place Labeling in a “second wave” of cyclic operation. Under this proposal, Labeling
proceeds cyclically but exhibits variable latency; i.e. it is simply delayed, and not forced

1⁴ For (1e), ∗of which car did the driver cause a scandal, there is a Phase boundary (v∗P) separating C from the
initial Merge of the driver of which car to the Edge of v∗. Since Phase boundaries are pushed onto the stack in our
implementation, we could make use of this to rule out (1e). However, the actual implementation makes use of an
i-within-i-style stacking constraint: “if [A .. [B ..]] is pushed onto the stack, and [B ..] from a substream is already
on the stack, A subsumes B and renders B unavailable on the stack.” This means the stack element for the driver
of which car blocks the required stack element (of ) which car, and thus (1e) cannot be formed.

1⁵ By “not in lockstep” we mean that SOs need not be Merged and labeled in complete synchronicity; in
particular, the label for a SO can be determined post-Merge (cf. Label Accessibility Condition (LAC): Chomsky
2000).

jasonmacbookproMain
挿入テキスト
.



OUP UNCORRECTED PROOF – FIRST PROOF, 11/5/2019, SPi

22 2 towards a minimalist machine

to make a decision about the label of the result of every Merge. These and other
shifts pose concrete challenges to settling on a particular theory to implement, never
mind settling on a particular formal or mathematical framework such as minimalist
grammars (Stabler 1997).

2.4 Architecture overview

Let us review the components of the implementation introduced so far: we have defined
a machine state as consisting of a current syntactic object (SO) and an ordered list of
heads (LIs). We have also argued earlier for an unvalued feature (!F) stack. Therefore,
the components of the machine state are now as given in (3):

(3) (SO, !F Stack, LIs)

Operations, to be defined below,mapmachine states tomachine states. Let us note that
operations have severely limited access to each of the components identified above for
computational efficiency reasons as follows:

A. The current syntactic object (SO) is opaque except for access to top-level gram-
matical features. We assume that features percolate upwards according to the
headedness of constituents of the SO. In other words, the features of {α, β} will
be determined by P, selecting recursively from the features of α (or β). In more
contemporary terms, our model integrates Labeling tightly with Merge P, with P
deciding on the label of {α, β} immediately.1⁶

B. The unvalued feature stack (!F Stack) is accessed for all probe-goal operations. No
access is made to the current SO. The first matching stack element is retrieved.
However, Phase boundaries are also registered on the stack. Since access cannot
proceed beyond a Phase boundary, and stack order equals hierarchical distance,
the Phase Impenetrability Condition (PIC) (Chomsky 2001) and the MLC are
largely accounted for.1⁷

C. As discussed earlier, we assume the list of heads (LIs) is pre-ordered for convergent
computation. Operations can only access the first element of the list; i.e. there can
be no operation that selects e.g. the 3rd, LI to be merged with the current SO.

2.5 Fundamental operations

Operations are defined below in terms of machine state. First, let us formally define
the fundamental Merge operations (introduced earlier):

1⁶ Deterministic immediate Labeling will not always be available, e.g. Set Merge of XP and YP creates {XP, YP}.
P will be forced to create a choice point producing both [XP XP, YP] and [YP XP YP].

1⁷ These MP conditions largely supersede earlier P&P framework concepts such as Government, Subjacency,
Barriers (Chomsky 1986), and Relativized Minimality (Rizzi 1990).
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(4) a. External Set Merge (ESM):
(α, K, [H, ..])↦ ({α, H}, K’, [..])
stack: K’ = K, i.e. unchanged, unless α[!F]; if so push α onto K to create K’

b. Internal Set Merge (ISM):
(α, K, [..])↦ ({βα}, K, [..]), β ∈ K

c. External Pair Merge (EPM): (α, K, [H, ..])↦ (<H,α>, K, [..])

(Recall that machine states, given in (3), are triples of the form (SO, K, LIs). Operations
define mapping (↦) of states to states. Mathematically speaking, operations need not
be functions, as will be discussed later. In (4a), α refers to the SO, K refers to the !F
Stack, and [H, ..] refers to the input stream of LIs with H as the first element.)

ISM in (4b) selects a sub-SO β of α from the stack K. This means that there must
(originally) be some unvalued feature F accessible in β[!F]. ISM is thus a feature-driven
operation with one exception. Suppose a feature !F is valued on β, then the question
arises whetherwe should delete it from the stack. Itmay come as a surprise to the reader
that we do not remove anything from the stack. As a result, stack items remain available
for further (Merge) operations. To search for and remove inactive stack elements is a
bookkeeping task that incurs a computational penalty. We always skip these chores.
Also, by not deleting valued stack elements, it is possible to implement movement
such as topicalization and rightwards displacement without resorting to the invention
of non-substantive unvalued features for the sole purpose of keeping a stack element
“active” (necessary in a strict feature-checking model).

We also model Leftwards Thematization/Extraction (TH/EX) (Sobin 2014), making
use of already stacked DPs1⁸ In the expletive construction shown in (5a), the object a
book raises leftwards over taken, the verbal past participle (cf. (5b)). In our grammar,
an invisible light verb v∼ (following Sobin) attracts an already stacked sentential object
(with unvalued Case), as v∼ possesses an Edge feature. In the corresponding active
sentence, (5c), there is no v∼, and a book does not raise.1⁹

(5) a. There was a book taken = (27c) (Sobin 2014)
b. ∗There was taken a book = (27b) ibid.
c. John took a book

A second group of fundamental operations involve the shifting of Workspaces (WS).
Associated with a WS is a current SO plus stack and input list, and a single stream
of operations (determined by P) that empties the input list and converges on a single
SO. Consider the sentence (6a) below. There are two DPs that must be independently

1⁸ It can be argued that stylistic phenomena such as TH/EX should not be within the purview of narrow syntax:
see Chomsky (2001). It is not clear to us how this can be accomplished at the PF interface, as it seems to involve
the displacement of entire DPs. Hence, we have chosen tomodel it as part of syntactic movement, following Sobin
(2014).

1⁹ Another way to implement apparent leftwards movement would be to add features to move the verb around
instead of the object DP. However, in our model this would require potentially stacking all verbs.
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assembled. In our model, we pre-load the input list as shown in (6b). (Note that there
are two distinct uncomplicated LIs shown: these are not copies.)

(6) a. An uncomplicated man makes uncomplicated plans
b. [plans, uncomplicated, make, v∗, [man, uncomplicated, an], T, C]

In the current model, sub-LIs may be pre-inserted at strategic locations within the
main input list. Sub-LIs induce WS management operations. A sub-LI specifies both
an independent stream of LIs to be assembled and also the position of the computed
sub-SO in the main stream. In the example above, [man, uncomplicated, an] is placed
at the position where we want the DP to be inserted back into the main stream
after sub-stream computation completes. Since it is a sentential subject, we specify
it should be inserted between the verbal categorizer v∗ and tense T. The machine
proceeds from left to right, and recursively merges plans, uncomplicated,make, and v∗

in one uninterrupted sequence of operations to form the intermediate SO {v∗, {make,
{uncomplicated, plans}}}. The corresponding machine state is shown below in (7a).2⁰

(7) a. ({v∗, {make, {uncomplicated, plans}}}, _, [[man, uncomplicated, an], T, C])
b. (man, _, [uncomplicated, man])
c. ({an, {uncomplicated, man}}, _, [])
d. ({v∗, {make, {uncomplicated, plans}}}, _, [{an, {uncomplicated, man}}, T, C])
e. {{an, {uncomplicated, man}}, {v∗,{make, {uncomplicated, plans}}}}, _, [T, C])
f. ({C, {DP, {T, {DP, {v∗, {make, {uncomplicated, plans}}}}}}}, _, [])

In state (7a), the machine encounters the sub-LI [man, uncomplicated, an] next. This
signals the machine to enter a sub-WS and begin a new sub-stream computation. The
sub-WS has man as the first SO and remaining LIs [uncomplicated, an], as in (7b).
This computation ends when a single SO {an, {uncomplicated, man}}, a DP, is formed
and there are no more LIs left ([]), as in (7c). The machine then terminates the sub-
stream, and pops back up to the saved main-stream machine state, but with the newly
computed DP inserted at the front of the LIs, as given in (3d). ESM of the SO with
DP = {an, {uncomplicated, man}} creates {DP, {v∗, {make, {uncomplicated, plans}}}}.
The derivation then converges with {C, {DP, {T, {DP, {v∗, {make, {uncomplicated,
plans}}}}}}}, as shown in (3f).

More generally, we can define the two WS shift operations shown in (8a,b):

(8) a. Down WS (DWS): (α, K, [[H, ..], ..])↦ (H, [], [..])
b. Up WS (UWS): (β, _, [])↦ (α, K, [β, ..])

In (8a), the first element of the input itself is an input stream ([H, ..]), and H becomes
the new initial SO of the sub-WS. Note that α, K, and the rest of the input stream
are temporarily forgotten, and restored only in (8b). β is transferred from the sub-
WS to be the first element of the higher input stream. (8a,b) represent a serial view

2⁰ Notation: an underscore placeholder is used for the stack to indicate that its value is not relevant to this
discussion.
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of computation implied by the presence of sub-LIs. In a highly deterministic model
such as the one described here, a serial implementation is a reasonable choice. In a
free Merge model, where non-determinism dominates the computational landscape,
separately forming all sub-SOs associated with sub-LIs first, and then substituting
the completed SOs back into the LIs before beginning main-stream computation will
always be the more computationally efficient choice.21

2.6 The decision procedure P

The decision procedure P is at the heart of our model. In fact, one can argue it is
actually the “brains” of the model, in the sense it decides which operation should
issue given any particular machine state. As mentioned in an earlier section, correct
decision-making requires oracle-like powers. We have aimed for a minimal P that is as
deterministic as it is practical. The system does compute multiple SOs in some cases—
we return to consider an example of this in a later section; but by and large, it is locally
deterministic, issuing one fundamental operation (defined in the above section) per
machine state. Further, we claim our machine produces correct derivations for a wide
variety of examples from the literature. (For space reasons, we cannot list the examples
or their derivations. However, we can demonstrate the veracity of our claim22) The
question then arises as to how we came up with this particular decision procedure
P. The short answer to this important question is simply by inspection (and trial and
error) as we incrementally introduced examples to the system. This is also the reason
why we stated earlier that P has an ad hoc component (see also note 9).

The following groups of actions are presented in strict order and constitute ad hoc
P; i.e. only the first matching action will be triggered. As a result, ad hoc P is largely
deterministic. (Cases where P is non-deterministic will also be discussed.) Each action
makes use of the following template:

(9) (SO, Stack, LIs)↦ (SO’, Stack’, LIs’)
[Preconditions on SO, Stack, and LIs]
stack: [Stack’ derived from Stack]
[Labeling for constructed SO’]

(Recall thatmachine states have signature (SO, Stack, LIs).)We constructmachine state
(SO’, Stack’, LIs’) from (SO, Stack, LIs) if stated preconditions aremet.The last two lines
will specify stack operations and Labeling for the new current SO, respectively. For each
action, we will briefly list an example that motivates its inclusion; however, the reader

21 The reason is that the results of sub-LI computation can be shared (and not repeated) within separate threads
of execution in the case of non-determinism. This way memorization is achieved for free, but discussion of the
details and its effects would take us beyond the scope of this chapter.

22 Full step-by-step derivations are provided for all the examples that we cover in http://elmo.sbs.arizona.edu/
sandiway/mpp/binding-examples/.
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is referred to Ginsburg and Fong (Chapter 3 this volume) for derivation walkthroughs
and further details.

We begin with the only actions that do not follow the template introduced in (9):

(10) Phase Completion: (α, [β,..], [..])↦ (α, K’, [..])
if phase(α), where α is current SO,
stack K’ = [β, ..] with inactive(SOs) fronted

Basically, this states that completion of a Phase will result in stack visibility changes.
First, some background: in the case of syntactic pronominal Binding, we employ a
Kayne (2002)-style doubling constituent (DC)23 In the case of a sentence like (11a), we
begin its derivation with the LIs listed in (11b).

(11) a. John1 thinks (that) he1 is smart
b. [john, d, he, d, smart, vbe, T, ce, think, vunerg, T, c]
c. {smart, {d!case, {he, {d!case, John}}}}
d. [CP (that) he1 is smart]
e. ∗John1 praises him1

In (11b), the prefix [john, d, he, d, . . . ] produces the DC {d, {he, {d, john}}}. This 
is a DP with an internal DP; we will refer to the entire DP as a DC. At the interface, 
DC [dx [d y]] will mean that x and y are coreferential. (We assume noun phrases are 
DPs; however, we will sometimes abbreviate a DP using just the head noun.) Since the 
r-expr John is in a subsidiary position within the DC, it will have to undergo IM to a 
theta-position, and get its Case feature valued.

Since the DC contains unvalued Case, it will be stacked when the adjective smart is 
merged in (11c), in accordance with (2i). (We assume the locus of unvalued Case (!case) 
to be the D head.) Although John is buried inside the DC, since it also has unvalued 
Case, it must also be stacked. However, we stipulate that the subsidiary DP must be 
stacked with status “inactive”, meaning it is rendered inaccessible to search. Activation 
of inactive stack elements falls to the PC actions in (10).

Upon completion of a Phase, e.g. (11d), (10) fronts previously inactive John in the 
stack, and activates it. As a result, {d!case, John} becomes visible to IM, and !case to 
probe-goal. John then takes up the matrix subject position. Note that the requirement 
of activation at a phase boundary is necessary in order to block (11e). If John is available 
upon initial stacking, (11e) would be predicted to be grammatical.

(12) Halt: (α, [..], [])

(12) is the simplest action: if there are no more LIs ([]), the machine halts, and SO α is 
the result. If α contains any unvalued features, the machine crashes.2⁴

The next mini-group of actions concerns merger of a determiner (d) from the LIs:

23 For further details about modeling of Kayne (2002), see Fong and Ginsburg (2012a).
2⁴ Although our machine halts in this state, in theory additional IM operations may be possible, e.g. topical-

ization. We do not explore this option.
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(13) Action Group: D Merge
i. (n, K, [d ..])↦ ({n, d}, K’, [..])

in d[!n] and n[!d], !n and !d are valued
stack: K’ = push n and/or d onto K if n or d have unvalued features
d labels {n, d}

ii. (d1, K, [d2 ..])↦ ({d1 d2}, K, [..])
d’s share !case and !n
d1labels { d1 d2}

External Set Merge of d from LIs to the SO n in (13i) is accompanied by mutual
uninterpretable feature valuation for !n and !d. This seems redundant: i.e. why not
simply merge d and n without checking off !n and !d? The answer is: in our grammar,
some determiners, e.g. drel, used for relative clauses, do not value uninterpretable !d.
We derive (14a) from the LIs in (14b). The object DP {drel, book!d} will contain book
with unvalued d (viz. book!d). After constructing the clause headed by crel, book!d raises
to form (14c). Since book!d is a head, it also labels (14c).2⁵

(14) a. the book (that) I read
b. [book, drel, read, v∗, [i, d], Tpast, crel, the]
c. {book!d, crelP} (crelP derives “(that) I read”)
d. {the, {book, crelP}}

In the final step for the construction of the relative clause, the determiner the, a head
that is generally able to value !d, merges with (14c), creating (14d). The new head the
values !d on book. This completes our discussion of action (13i).

Action (13ii) was created for the case of exclamatives, such as in (15a):

(15) a. What a silly book!
b. {what, {a, {silly, book}}}

In our grammar, both what and a are analyzed as determiners. Since Case on the DP
in (15a) will be valued just once, we have what and a sharing unvalued features (!case
and !n).

(16) Doubling Constituent (DC) Merge:
(α, K, [β ..])↦ ({α, β}, K’ , [..])
if β is a DC [d x γ]
stack: K’ = K + β[!F1] + inactive γ[!F2]
SO α labels {α, β}

Earlier, we introduced Kayne’s notion of a DC for pronominal Binding. Action (16)
will stack both the entire DC (β) and the subsidiary DP(γ) (inactivated) from a lower

2⁵ In a more elaborate theory, book in (13) would actually be composed of a root book + categorizer n, a
functional head. A root R would not be able to label {R, XP}. Another strategy will be needed. The details are
beyond the scope of this chapter.
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WS. Both β and γ have unvalued Case; γ also has an unvalued interpretable θ-feature.
See earlier discussion of sentence (11a).

(17) Action Group: Merge to Edge of T
i. (T[!Edge], K, [EXPL,..])↦ ({T, EXPL}, K’, [..])
first(LIs) is EXPL, e.g. there
stack: K’ = K + β if β[!F], otherwise K’ = K
SO T labels {T, EXPL}
ii. T[!Edge], K, [..])↦ ({T, β}, K, [..])
β ∈ K
SO T labels {T, β}

In action group (17), we find a potential conflict between the two actions listed:
however, (16i) precedes and blocks (16ii). In more detail, (16i), i.e. ESM of an expletive
to the edge of tense T, is preferred over (16ii), i.e. ISM of an argument from the stack.
In either case, T[!Edge] means that T must have an unvalued uninterpretable Edge
feature (!Edge) for the action to fire2⁶

Consider the expletive construction in (18a) and the machine state in (18b):

(18) a. There is a train arriving
b. ({T, ..{arrive, {a, train}}}, _, [there C])
c. A train is arriving

At machine state (18b), the correct move is to merge expletive there from the LI input,
rather than to raise the DP {a,train}. Hence, (17i) must come before (17ii). Note that
(17ii), not (17i), must be triggered in the derivation of (17c). (The crucial difference is
that expletive there will not be present at the LI input in the case of (17c).)

(19) Theta Merge:
(XP[!θ], K, [Root,..])↦ ({Root, XP}, K’, [..])
if Root is V (or A)
Root values !θ on XP
stack: K’ = K + XP if XP[!F], otherwise K’ = K
Root labels {Root, XP}2⁷

In action (19), we find the basic case of a verbal (or adjectival) Root merging with
an object. The Root assigns a θ-role to the object XP. In our grammar, potential
arguments will have an unvalued interpretable θ-feature. Note that structural Case is
not valued here. In Chomsky (2000; 2001), functional heads v∗ and T probe and value

2⁶ Edge of T is the classic EPP feature. After Merge obtains, the uninterpretable Edge feature is valued, and
cannot be used again. This feature-driven approach is a weak point in our system: should the theory be updated
to allow multiple merges to the edge of T, we would require multiple Edge features.

2⁷ In algorithmic Labeling, e.g. Chomsky (2013; 2015a), roots are too “weak” to label, andmust be strengthened
in the configuration {XP, {R, XP}}, where XP and R share identical ϕ-features. Thus, Object Shift becomes
obligatory. We do not model Object Shift in this system.
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accusative and nominative Case, respectively.2⁸ If XP[!F] obtains, i.e. XP has some
uninterpretable feature such as !Case, it is pushed onto stack K, and can be accessed by
ISM or probe-goal.

(20) Internal Theta Merge to P:
(XP[!θ!case], K, [P, ..])↦ ({P, XP}, K’, [..])
P values !θ and !case on XP
stack: K’ = K + XP or K + {P, XP} if XP[!F], otherwise K’ = K
P labels {P, XP}

Action (20) is very similar to action (19) (but see also action (22) below). In (20), a
preposition P selects for an object (XP). The two significant differences are that: (i)
P values uninterpretable Case for XP, and (ii) XP may be stacked2⁹ To accommodate
pied-piping, either the object (XP) or the PP {P, XP} may be pushed onto the stack.3⁰
This non-determinism allows the generation of either (21a) or (21b) from the same list
of LIs (21c):

(21) a. Of which car did they find the driver? (adapted from Chomsky 2008)
b. Which car did they find the driver of?
c. [car, which, of, driver, the, find, v∗, [they, d], Tpast, cQ]

(22) Action Group: External Theta Merge to P:
i. (PP[!Edge], K, [XP[!θ],..])↦ ({XP PP}, K’, [..])

PP = {P, YP}
P values !case and !θ on XP
stack: K’ = K + XP if XP[!F], otherwise K’ = K
P labels {XP, PP}

ii. (PP[!Edge], K, [..])↦ ({XP, PP}, K, [..])
XP[!θ] ∈ K
P values !case and !θ on XP
P labels {XP, PP}

Action (22i) permits the merger of an external argument XP to a preposition that
supports one. The PP, abbreviating {P, YP} in (22i), must have an unvalued Edge
feature. P also values interpretable !θ on XP, as well as assigning Inherent Case. Dyadic
theme/goal to is an example of such a preposition; see example (23a), with our analysis
given in (23b). Note that XP, from the LIs in (22i), is not a head, and therefore must

2⁸ Except, in later theories, e.g. Chomsky (2008; 2013), v∗ simply transmits its inflectional features to the verbal
root. The verbal root then is responsible for valuing accusative Case. This has architectural consequences. In an
earlier section, we stated that, for simplicity and efficiency, a head gets only a single chance, i.e. at ESM time, to
probe and value. But in {v∗, .. {V, OBJ}}, V cannot probe and value until it receives the inflectional features from
v∗. But this does not happen until v∗ is ESM’d, a situation that could be ungenerously viewed as a NTC (or strict
cycle) violation.

2⁹ In action (19), V does not directly assign Case; instead, the higher functional head v∗ does. In action (20), P
directly assigns Inherent Case. But see also note 30.

3⁰ The actual code is a bit more complicated. In our grammar, some prepositions may be empty, i.e. have no
spellout. Following Pesetsky (1995), such prepositions may be used to analyze double object constructions, e.g.
I gave [P [DP Mary] [[P][DP a book]]]. There is no choice point generated in these cases.
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have been formed in an WS earlier. (It must then have been uplifted to the LIs using
operation (8b).)

(23) a. John gave a book to Mary
b. {{d, John}, {v∗, {give ,{{a, book}, {to, {d, Mary}}}}}

Action (22ii) differs from (22i) in that it grabs the external argument XP off the stack.
This is to permit the subsidiary DP in a Doubling Constituent (DC) to θ-Merge.
Consider sentence (24a):

(24) a. I showed John1 himself1 in the mirror
b. [john, d, he, self, G, [mirror, the, in], show, v∗ [i, d], Tpast, c]
c. {self!case, {he, {d!case, john}}}
d. {G, {self!case, {he, {d!case, john}}}}
e. {{d!case, john}, {G, {self!case, {he, {d, john}}}}}

(24b) is the list of lexical heads needed. The prefix [john, d, he, self, ..] forms the DC
given in (24c). In our grammar, we assume himself = self + he, and therefore [d himself,
[d john] is the relevant DC.31 Following Pesetsky (1995), G is a dyadic preposition with
the DC as object. John does not yet have Case or its θ-feature valued; hence John will
be stacked upon Merge of G.32 Action (22ii) will trigger at stage (24d) to form (24e).

(25) External Theta Merge to D:
(DP[!Edge], K, [XP[!θ!case], ..])↦ ({XP, DP}, K’, [..])
DP = {d YP}
D values !case and !θ on XP
stack: K’ = K + XP if XP[!F], otherwise K’ = K
D labels {XP, DP}

Action (25) is very similar to action (22i), the crucial difference being that we ESM
to DP (instead of PP). Action (25) is triggered for possessives in English; e.g. example
(26a) receives the simplified analysis given in (26b)

(26) a. his dog
b. {{d, he}, {’s, {d, dog}}}

In (26b), ’s is treated as a dyadic determiner with internal subject he and object dog.
We assume that he + ’s = his33

31 See also discussion of example (11a).
32 Given the discussion of example (11e), the reader might reasonably expect John to be stacked inactive, and

therefore inaccessible to action (22ii). However, in our grammar, the reflexive -self is analyzed as the head of the
DP himself, and it permits active stacking by being a Phase head (a lexical stipulation). On completion of the DP
headed by -self, it activates any inactive stack items in its domain, in accordance with the Phase Completion (PC)
actions defined in (10). Thus, examples like John1 praises himself 1 and (24a) are ruled in.

33 The analysis given in (26b) is the simplest case.Wemake use of a Doubling Constituent (DC) for pronominal
he for examples like John1 likes his1 dog. In other words, he+’s dog should be {{d, {he, {d, john}}}, {’s, {d, dog}}}. See
also discussion of example (11a).
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(27) Action Group: External Theta Merge to v∗

i. (vP[!Edge], K, [XP[!θ], ..])↦ ({XP, vP}, K’, [..])
vP = {v∗, YP}
stack: K’ = K + XP if XP[!F], otherwise K’ = K
v∗ labels {XP,vP}

ii. (vP[!Edge], K, [..])↦ ({XP, vP}, K, [..])
vP = {v∗, YP}, XP[!θ] ∈ K
v∗ labels {XP,vP}

Actions (27i,ii) parallel (22i,ii). The essential difference is we θ-merge to the Edge of
transitive verbalizer v∗ in (27). Since (27i) precedes (27ii), we have expressed a prefer-
ence for external Merge over IM. The situation in (28b) represents the crucial case:

(28) a. John1 knows Peter realizes that Mary likes him1
b. {v∗, {realize, .. {d, {he, {d, john}}}..}}
c. Peter knows John1 realizes that Mary likes him1

In the case of example (28a), Peter must be externally Merged at stage (28b). However,
the DC analysis of pronominal Binding means that John is also a candidate for Merge.
The DC is [d he [d john]], and John will be stacked as initially inactive (see earlier
discussion of (11)). On completion of the Phase [CP that Mary likes him], John will
be activated and compete with Peter (from the input stream) for the subject position
of v∗-realize. The correct decision in this case is to take Peter from the input stream
(external Merge) over John from the stack (IM).

Comparing (28a) with (28c), it is clear that wemust take John from the stack in (28c).
However, we have only the appearance of a reversal of choice. For (28c), Peter will be
further downstream in the LIs, and therefore unavailable at stage (28b). Our preference
of Merge over Move can be maintained3⁴

(29) Merge v and VP:
(VP, K, [v, ..])↦ ({v, VP}, K’, [..])
v probes K: Agree(v, G) if goal G ∈ K
stack: K’ = K + v
v labels {v, VP}

Action (29) triggers probe-goal for categorizers that need to value Case, e.g. v∗. We
assume that all verbal roots (V) must have some categorizer v. However, not all
categorizers need probe. For transitive sentences such as (30a), v∗ must probe and
value Case on the object (see (30b)). However, for intransitives like (30c), v in (30d)
does not probe.

(30) a. John likes Mary
b. {v∗, {like, {d!case, mary}}}

3⁴ In the case of action group (22), we have the same preference encoded when merging to the subject position
of P. The crucial example(s) for that group are: John1 gave Peter2 his1/2 book.
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c. John runs
d. {v, {run}}

In some situations, the v probe itself could be a goal downstream. Since all probe-goal
operations consult the stack, we stack v. For our grammar, the probe-as-goal scenario
occurs in cases of auxiliary verb movement to C, such as (31a). In our grammar,
auxiliary will is a v, a light verb stacked on v∗, as shown in (31b).

(31) a. What will Mary buy?
b. {will, {{d, Mary}, {v∗, {buy, {d, what}}}}} = willP
c. {T, willP}
d. {will, {T, willP}}
e. {cQ, {{d, Mary}, {will, {T, willP}}}}
f. {{d, what}, {T, {will, {cQ, {{d, Mary}, {will, {T, willP}}}}}}}

Merge of T in (31c) results in T probing not only with the purpose of Agree(T, Mary)
but also for a unvalued v-feature present on auxiliaries like will. We stipulate that
when this situation obtains, T attracts v in the sense of Pesetsky and Torrego (2001;
hereinafter abbreviated to P&T). Suppose we assume that when a head x attracts
another head y, y must raise to the edge of x. In the case of (31a), will raises to the
edge of T, forming (31d).3⁵ Next, Mary raises to the surface subject position at the edge
of T. Then interrogative head cQ is merged. cQ probes and attracts wh-item {d, what}.
However, adopting the T to C story of P&T, cQ also has an unvalued uninterpretable T
feature. In the case of (31a), unvalued T on cQ can be valued by attracting T. Therefore
T raises to the edge of cQ. Pied-piping ensures that will also raises to the edge of cQ3⁶
Assuming Spellout operates by only pronouncing the highest copy, auxiliaries appear
in C in interrogatives.3⁷

(32) Merge T and vP:
(vP, K, [T,..])↦ ({T, vP}, K, [..])
T probes K: Agree(T, G) if goal G ∈ K
T labels {T, vP}

Action (32) encodes the T counterpart to v∗ of action (29). Some instances of T, e.g.
Tpast (present in many of the examples above), will probe and value Nominative Case
on amatching goal from the stack. Others, such as non-finite T embedded in Peter likes
to eat, will not.

(33) Merge C and TP:
(TP, K, [c, ..])↦ (CP, K, [..])
cQ probes K: CP = {G1 ..{Gn, {cQ TP}}}..} for some goal(s) Gi ∈ K
crel probes K: CP = {G, {crel, TP}} for some goal G ∈ K

3⁵ Note that will does not label {will ,{T,vP}}. It is attracted to the edge of T, so T still labels.
3⁶ We assume transitivity of attraction here: i.e. if x attracts y, and y attracts z, then z also raises to x
3⁷ “The simplest assumption is that the phonological component spells out elements that undergo no further

displacement—the heads of chains—with no need for further specification” (Chomsky 2001).
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ce probes K: CP = {G, {ce, TP}} for some goal G ∈ K
c does not probe: CP = {c, TP},
c labels CP

Action (33) encodes merge of the complementizer C to the current SO TP. Interrog-
ative cQ triggers wh-phrase probing. As described in detail for example (31), this may
also trigger a cascade of concomitant IMs to the edge of cQ. In our grammar, non-
interrogative C is relatively inert; it has no Edge feature, and IM is not permitted.3⁸
(We will return to consider the cases of crel and ce later.)

(34) Pair Merge:
(α, K, [β, ..])↦ (<β, α>, K, [..])
α and β both non-heads
α labels <β, α>

Action (34) is deliberately situated as nearly the last possible action of ad hoc P. If none
of the previous actions match, and α and β both are phrases, Pair Merge is permitted
to apply. As currently defined, the adjunct comes from the input stream side only. This
means the order of LIs supplied is crucial.

(35) a. John read a book in the gym
b. [book, a, [gym, the, in], read, v∗, [john, d], T, c]
c. ({a, book}, _, [{in, {the, gym}}, read, v∗, [john, d], T, c])
d. <{in, {the, gym}}, {a, book}>
e. {read, <{in, {the, gym}}, {a, book}>} = VP
f. {c, {{d, john}, {T, {{d, john}, {v∗, VP}}}}}
g. [gym, the, in, [book, a], read, v∗, [john, d], T, c]
h. ({in, {the, gym}}, _, [{a, book}, read, v∗, [john, d], T, c])
i. <{a, book}, {in, {the, gym}}>

Consider sentence (35a). (35b) is a possible input stream for (35a). After constructing
the object a book, the machine builds in the gym in a lower WS, and injects the PP back
into the main stream just in front of the verb read. This machine state in given in (35c).
Action (34) applies, and (35d) is created. The verb root read is merged next, forming
(35e), and the derivation can proceed to converge as (35f). With regard to probe-goal
search and furtherMerge operations, (35d) is identical to {a, book}3⁹The adjunct in the
gym is opaque to further inspection.⁴⁰

3⁸ See also note 29. We do not implement syntactic feature transmission. In recent accounts, e.g. Chomsky
(2008), inflectional features are transmitted from C to T, and from v∗ to verbal root R. R is the proxy for v∗ that
initiates Agree. In our grammar, T in the lexicon comes with the necessary inflectional features, and v∗ carries out
Agree directly. One disadvantage of our approach is that we need to list multiple T-s in the lexicon. On the other
hand, we get to preserve our simple computational model of (first) Merge probe only, thus avoiding extra search
and bookkeeping.

3⁹ The adjunct in the gym can be adjoined at a higher level, e.g. to the verb read, to obtain a different reading
for sentence (35a).

⁴⁰ Note pair merge should crash if <β[!F], α> results. Since the adjunct is opaque to the machine, the unvalued
feature F can never be valued. ∗β[!F] (unimplemented) should precondition (34).
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If we swap book and gym, as in (35g), (35h) would be the equivalent machine state,
producing (35i), with the adjunct in the gym incorrectly identified as the head of the
pair-merged phrase.

(36) Relabeling:
(α, K, [d,..])↦ ({d,{n,α}}, K, [..])
head n ∈ K
in d[!n] and n[!d], !n and !d are valued
n labels {n,α}, and d labels {d,{n,α}}

Action (36) is designed solely to fire in the case of relative clauses, and is an example
of an experimental construction-specific rule.⁴1 Consider example (37a):

(37) a. the book which I read
b. ∗the book which that I read
c. [book, whichrel, read, v∗, [i, d], Tpast, crel, the]
d. { whichrel, book!d}
e. {crel {{d, i}, {Tpast, {{d, i}, {v∗, {read, {whichrel, book!d}}}}}}}
f. {{whichrel, book!d}, {crel {{d, i}, {Tpast, {{d, i}, {v∗, {read, {whichrel, book}}}}}}}}
g. {the, {book, {{whichrel, book} crelP}}}

In (37c), the object DP which book will be relativized. To trigger this, we preselect
whichrel, instead of regular determiner which, for the input stream. The determiner
whichrel has some special properties: (i) unlike regularwhich, it cannot check unvalued
d on the noun (see (37d)); and (ii) it can check unvalued T, which will become useful
at the sentential level⁴2 When (37d) is formed, book has an unvalued feature, and so
it is stacked. We proceed to build the clause headed by crel, shown in (37e). The head
crel possesses both unvalued T and Rel features, and probes into the TP complement
domain. IMofwhich bookwill satisfy both unvaluedT andRel on crel (due to the special
properties ofwhichrel). (37f), = crelP, is formed. At this point, action (36) kicks in: it first
raises previously stacked book!d to head {book!d, crelP}; this is the relabeling step. Then
the, the last item on the input stream, is merged to form (37g).

Let us now consider (37b): why is this blocked? Following P&T (2001), the comple-
mentizer that is the spellout of T to C movement. T to C movement arises when a C,
with unvalued T, attracts T. We have mentioned that crel possesses both unvalued T
and Rel features; so crel could value these features by first attracting T to C (to value
T), and then {whichrel book} (to value Rel).⁴3 However, derivational economy blocks

⁴1 This action should be expanded and replaced by a more general rule governing IM of heads. Relabeling is
currently only permitted for nouns for the sole purpose of forming relative clauses. Even in a tightly constrained
feature-checking system, such as the one described here, the action should be generalized (with respect to
constructions and categories).

⁴2 Relativization was also discussed earlier with respect to action (13).
⁴3 For dialects of English that do permit (37b), we must: (a) turn off economy, and (b) make sure which book

is raised last to block ∗the book that which I read. If there are dialects that allow all three versions, we need not
worry about the order of raising.
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this option in favor of the single operation of IM of {whichrel book} to simultaneously
satisfy both features. Hence (37b) is ruled out.

To summarize, we have presented a list of structure-building actions that all follow
the template in (9). We have attempted to justify the inclusion of each one from
theory and example.⁴⁴ Taking a step back, the listed actions can also be viewed as
just “ground” instances, in terms of particular lexical and functional categories, of the
fundamental operations listed in (4) and (8). For actions where we are reasonably sure
the preconditions are deducible from theory, we can make a case that (that part of) P
is not ad hoc. However, the order of the actions presented involves manual curation,
and thus is wholly ad hoc.

2.7 Non-determinism revisited

We have already seen an example of non-deterministic behavior for cases of pied-
piping such as in (21a,b), implemented using action (19). We have also seen above
how Pesetsky and Torrego’s economy condition can be extended to eliminate com-
peting derivations in relative clause formation. Turning to examples (38a,b) we will
now describe how P&T’s condition can also lead to productive non-determinism in
action (33).

(38) a. Mary thinks that Sue will buy the book
b. Mary thinks Sue will buy the book
c. [book, the, buy, v∗, Sue, will, T, ce, think, vunerg, Mary, T, c]
d. { ce, {Sue, {T, {Sue, {v∗, {buy, {the, book}}}}}}}
e. {Sue, { ce, {Sue, {T, {Sue, {v∗, {buy, {the, book}}}}}}}}
f. {T, { ce, { Sue, {T, {Sue, {v∗, {buy, {the, book}}}}}}}}

Both (38a) and (38b) have the same starting input stream, (38c), in the system
described here.⁴⁵ We first form the embedded clause, (38d), headed by ce, using the
prefix [book, the, buy, v∗, Sue, will, T, ce, ..]. We assume the complementizer ce has
unvalued T (and an Edge) feature. Hence, ce must probe, and action (33) is engaged.
There are two ways to value T in P&T’s framework: (i) by attracting a Nominative
Case-marked subject, as in (38e); and (ii) by attracting T, as in (38f). In both cases,
the attracted constituent moves to the edge of ce⁴⁶ Continuing (38e) with the suffix [..,

⁴⁴ Examples given in this chapater are all from the English side. Fragments of Arabic, Japanese, and Persian
have also received some attention. As a result, there are a few implemented actions, including some dealing with
mood and scrambling, that are not listed here. (The webpage mentioned in note 24 also contains links to a small
inventory of derivations of non-English examples.)

⁴⁵ We have replaced [d, sue] and [d,mary] by Sue andMary, respectively, in (38c).This is purely for convenience
of exposition; Sue (and Mary) should not be treated as heads in the derivation.

⁴⁶ In (38e), Sue has moved from the edge of T to the edge C. Already, at the edge of T, both of Sue’s unvalued
features, Case and θ, have been valued. Although the stack is initially stocked with constituents with unvalued
features, as discussed earlier, we do not prune away constituents that no longer possess unvalued features. One
reason is that it is a chore. The second is that there is a need to keep stack items around for further non-feature-
driven movement, e.g. (38e).
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think, vunerg, Mary, T, c] will derive (38b). Assuming T to C in (38f) spells out as that,
(38f) will lead to (38a).

2.8 Computational cyclicity revisited

Long-distance agreement can be a challenge for our notion of computational cyclicity
described earlier, in which Merge is closely tied to head probing. To recap, a head from
the input stream gets just a single chance to probe, value features, and have features
valued: precisely when it is first Merged with the current SO. Consider (39a,b):

(39) a. There seem to have been several fish caught (Chomsky 2001)
b. There seems to have been only one fish caught
c. [fish, several, catch, prt, v∼, there, perf, v, Tinf, seem, vnop, T, c]
d. {catch, {several!case, fish}}
e. Agree(prt!case!ϕ, {several!case, fish})
f. Agree(there, {several!case, fish})
g. Agree(Tinf {several!case, fish})
h. Agree(T, {several, fish})

(39a,b) shows that long-distance ϕ-feature agreement obtains between the matrix verb
and the object of the embedded clause. (See Figure 2.1 for the detailed parse computed
by the model.⁴⁷) In either case, matrix T is a probe that needs to have its unvalued
uninterpretable ϕ-features valued by several/one fish. The initial input stream for (39a)
is given in (39c), and (39d) is produced by repeated ESM using the prefix [fish, several,
catch,..].

Next, the passive participle prt will be merged. According to Chomsky (2001), prt
has both unvalued uninterpretable ϕ and Case features. Hence, prt must probe, and
finds several fish. For Agree, as in (39e), several fish can value prt‘s ϕ-features, but as
both of them are unvalued for Case, therefore prt cannot have its Case feature valued
at first Merge time. This poses a problem for our model because we would prefer not to
have to search out prt to probe again (after several fish receives Case from matrix T).
Instead, following Fong (2014), suppose Agree can “unify” Case features. In the current
model, the representation of unvalued uninterpretable Case is a term case(V), where
V is an open variable. A valued Case feature is one with the open variable bound to
a particular value, e.g. Nominative or Accusative. Suppose prt and several fish are
associated with case(V1) and case(V2), respectively. Then we simply unify V1 and V2.
Essentially, they become identical but remain unvalued. When one of them is valued,
the other is valued simultaneously because they have been made identical

⁴⁷ We will not explain Sobin (2014)’s v∼ here, except to mention that v∼ triggers leftwards TH/EX that raises
several fish above the verb catch. Instead, we refer the reader to Ginsburg and Fong (this volume) for the details.
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Figure 2.1 There seem to have been several fish caught

Continuing with the derivation, expletive there has unvalued ϕ-features.⁴⁸ If there is a
head, it must probe, and we compute (39f), valuing the expletive’s ϕ-features. Next, we
need to consider Merge of non-finite T, Tinf. Should Tinf have unvalued ϕ-features, we
compute (39g).⁴⁹

Finally,Merge of finitematrix T triggers (39h). To produce the analysis in Figure 2.1,
we have computed (up to) four separate Agree operations, (39e) through (39h). With
unification, we have no need to search out and relaunch the most deeply embedded
Agree operation. Thus, strict computational cyclicity and simplicity of the computa-
tional cycle can be maintained.

2.9 Further remarks and conclusions

We believe that building a “realistic” model of linguistic theory should be an important
goal of computational modeling. Let us define “realistic” computational modeling as
including automatically deriving in full detail the examples that linguists typically use.
However, there is considerable scope for variation on the degree of automation. In

⁴⁸ In Chomsky (2001), expletive there has only unvalued person.
⁴⁹ Tinf seems to be able to value nullCase for PRO subjects, and so perhaps it should have ϕ-features too. Vnop

is a dummy light verb that simply categorizes root seem.
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our current model, we manually pre-assemble the LIs; the model is solely responsible
for automatically converging on desired SOs (and rejecting those we deem illicit) in a
timely manner, without going into an infinite loop, or requiring manual intervention
or guidance. In a free Merge model, some of these simple goals may prove to be
impractical due to the combinatorics of the problem. In the case of our model, we have
a decision procedure P that is responsible for pruning the search space by selecting the
right operation to perform at all possible machine states. A highly deterministic model
such as the one described here is unlikely to encounter real-world limits on computa-
tional resources. The non-determinism described here is empirically productive, i.e.
it is needed to generate multiple licit examples. Then it is just an empirical question
whether single-action P can be maintained.

In at least two aspects, computational modeling can potentially provide useful
tools that are currently unavailable. First, through detailed tracing of the operations
performed, we can retrieve and compile complete step-by-step analyses (available
online). Should an action or fundamental operation be modified, automation permits
us to quickly and systematically determine the examples that will be affected.

Second, by bringing together theories and tweaking them to bemutually compatible,
we believe we have strengthened those individual accounts. The snapshot of the MP
that we have chosen to model and describe in this volume is a “mash-up” of the
probe-goal framework of (Chomsky 2001), overlaid with Pesetsky and Torrego’s (2001)
economy-driven model of T-feature checking, a modified account of Gallego’s (2006)
theory of relativization—a syntactic Binding theory that extends Kayne’s (2002) theory
of doubling constituents—and Sobin’s (2014) syntactic account of leftwards TH/EX.
Space does not permit us to fully describe the modifications made, but see Ginsburg
and Fong (Chapter 3 this volume) for a summary and highlights of the linguistic
aspects of the implemented theory.




