
Parallel	Computation	in	a	
Free	Merge	World

Sandiway Fong
University	of	Arizona
with	Jason	Ginsburg

Osaka	Kyoiku University

Acknowledgement:	Dr.	Nobuyoshi	Asai,	U.	of	Aizu,	Japan	for	the	test	platform

Contents

• Linguistic	Framework	and	Combinatorics
• Parallelizing	the	Framework	and	Results
• Feedback:	Improving	the	Framework
• Parallelism:	Job	size

Linguistic	Framework	and	Combinatorics

[Joint	work	with	Jason	Ginsburg]	
Theoretical	basis:	

• Chomsky	(2007)	and	Oishi (2015)
• nominal	and	determiner	phrase	structure	
(n*/d*-root)	parallels	verbal	phrase	
structure	(v*-root)

• Pair	Merge	(PM)	analysis:
• <Determiner,	Noun>

• forced	by	non-head	determiner
• cf.	*{{d,	root},	{n,	root}}	

• (unlabeled	Set	Merge	(SM))

• Relabeling:	Cecchetto &	Donati (2015)
• my	friend	=	{me,	{‘s,	friend}}
• friend	of	mine	=	{friend,	{me,	{‘s,	friend}}}

4

Phrase	Structure	Computation

the	friend	of	mine

Example:	syntactic
object	(SO)

• Example	input:	(a	list	of	heads):	
[friend,	n,	[me,	n,'s,	d*],	n*,[the,	d]]

• Combinatorial	Task:	recursively	apply	operations:
1. External	Set	Merge	(ESM):	form	{H,	α};	SO:	α,	Input:	[H,..]
2. Internal	Set	Merge	(ISM(β)):	form	{β,	α};	SO:	α	and	β	⊂+ α
3. External	Pair	Merge	(EPM):	form	<H,	α>;	SO:	α,	Input:	[H,..]
4. Internal	Pair	Merge	(IPM):	form	<α, β>;	SO:	α	and	β	⊂+ α
with	constraints	such	as:
1. *<β[!F],	α>	 where	!F	=	unvalued	feature	F
2. *ISM(βi)	ISM(βi);	i.e.	can’t	ISM	same	βi twice,	etc.

• ☜Example	output:
<{the, d}, {{friend, <{{{me, n}, {{me, n}, 's}}, d*}, {friend, n}>}, n*}>

• Example	of	questions	answered	by	computation:
A. is	this	the	shortest	derivation?
B. are	there	other	possible	derivations?

5

Phrase	Structure	Computation

the	friend	of	mine

Example:	syntactic
object	(SO)

YES

YES,	only	longer	ones…

Manually	Guided	Derivation…

Table:	sequence	of	
operations	leading	to	

computed	SO

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LO
G1

0(
#S
YN

TA
CT

IC
	O
BJ
EC

TS
)

#	OPERATIONS

Log10(#	SOs	Generated)	vs.	#	Operations

#operations	=	16
obtain	3	spurious	
analyses

#operations	=	15
obtain	single	analysis

Combinatorics	for	example†
†	naïve	version

• logscale y-axis:
• e.g.	6		=	106 =	million
• 15	operations	deep:

• 25	million	SOs	
generated

• 1	convergent	SO	
• (see	previous	slide)

• 16	operations	deep:
• 250	million	SOs
• 3	spurious	SOs	

• (see	next	slides)

Parallelizing	the	Framework	and	Results

Two	stages	of	parallel	processing

• Stage	1:	breadth-first	derivation	tree	search	(BFS):
• SO1..SO6	are	incomplete	SOs	that	can	be	expanded	further
• ▪represent	dead-ends
• go	as	deep	as	necessary	to	generate	the	number	of	starter	SOs	needed
• example:		going	10	deep	nets	us	1743	SOs

Example:

Step	1:	Expose	threads
Breadth-first	search	n deep:

1 2 2 4 6 13 49 158 486

1743

8093

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5 6 7 8 9 10 11

#	
th
re
ad

s

Depth

#	of	threads	generated	@	depth

Blue	SOs	may	be
expanded	
further:
these	are	our	
threads

Step	2:	Run	threads	in	parallel

our	concern:	load	
balancing
• threads	binned	by	job	size
• 1743	jobs	(threads)

• produced	by	initial	BFS	to	10	
operations	deep

• each	job	(go	6	deep)
• 10x	range	in	job	size	
observed:	
• 50,000	SOs to	600,000	SOs

• 72%	of	jobs	small:
• belong	to	the	3	smallest	
bins,	i.e.	0-150,000	SOs

0

100

200

300

400

500

600

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 More

FR
EQ

UE
NC

Y

JOB	SIZE	BINS

Job	size

Parallel	Speedup

• Runtime:
• Single	thread:	759	(secs)
• 32	threads:	57	(secs)	

• Speedup:	Amdahl’s	Law	
• (theoretical	limit)

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Ru
nt
im

e	
(s
)

#	concurrent	threads

Runtime	vs.	#	concurrent	
threads

Source:
wikipedia

13x	speedup
observed

we	are	somewhere here
16	CPUs:	with	HTT,	32	logical	cores

Is	Hyper	Threading	(HTT)	useful?

• Hyper	Threading	Technology:
• each	core	has	two	sets	of	registers
• hide	memory	latency

• Test	platform:
• Intel	Xeon	E5-2687W	HTT-capable	
(2U),	128GB	RAM

• total	of	16	cores	(32	logical	cores)
• region	8-32	threads:

• shortest	overall	runtimes	are	all	
achieved	by	with	HTT

• region	18-32	threads:
• averages	about	11.4%	
improvement	over	no	HTT

• region	8-16	threads:	
• no	HTT	is	5.5%	better

0

20

40

60

80

100

120

140

8 10 12 14 16 18 20 22 24 26 28 30 32

Ru
nt
im

e	
(s
)

#	concurrent	threads

HTT No	HTT

With	Workspace	(WS)	Precomputation

• Results	shown	earlier,	e.g.	57	(secs),	
were	actually	computed	on	a	non-
naïve	model
• region	107–108 SOs	(“wall”):
• too	much	for	the	test	platform:	
approx.	4.5	hours	CPU	time

• Non-naïve	model:
• pre-compute	sub-Workspace	(WS)	SOs	
• #	operations	required	reduced
• free	Merge	then	is	substantially	easier

“walk	back	from	the	wall”
0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LO
G1

0(
#S
YN

TA
CT

IC
	O
BJ
EC

TS
)

#	OPERATIONS

Log10(#	SOs	Generated)	vs.	#	
Operations

solution	found	@	
#operations	=	15

Workspace	(WS)	Precomputation

• Example:	
instead	of
[friend,	n,	[me,	n,'s,	d*],	n*,	[the,	d]]
actually	compute	with
[friend,	n,	{{{me,	n},	{{me,	n},	's}},	d*},	n*,	
{the,	d}]
• i.e.	use	pre-computed	mappings:
1. [me,	n,'s,	d*]⟼ {{{me,	n},	{{me,	n},	's}},	

d*}
2. [the,	d]⟼ {the,	d}

• Results:	
• Depth	6:	#SOs:	2,324;	1	solution
• Depth	7:	#SOs:	18,202;	2	solutions,	etc.. 0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

LO
G1

0(
#S
O
S)

#	MERGES

LOG10(#SOS GENERATED) VS.	
#MERGES

solution	found	@	6

18202

unwanted	solution	
found	@	7

unwanted	solution	
found	@	8

5	unwanted	solutions	
found	@	9

Workspace	(WS)	Precomputation:

Depth	=	6

Manually	Guided	Derivation…

Improve	the	Framework

• Parallel	processing	allows	us	to	
discover	5	extra	analyzes	at	
depth	9	(out	of	≈106 SOs)	10x	
quicker…

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

LO
G1

0(
#S
O
S)

#	MERGES

LOG10(#SOS GENERATED) VS.	#MERGES

1

1

1

5

Extra	Analyses	Uncovered:	Depth	7	&	8
Depth	=	7
Analysis:
Extraneous	ISM	of	{friend,n}
to	the	edge	of	friend

<ɸ,	ɸ>	because
{friend,n}		and	friend
have	identical	ɸ-features

Depth	=	8

Extra	Analyses	Uncovered:	Depth	9

Improve	the	Framework:	Theory	Adjustment

[Joint	work	with	Jason	Ginsburg]	
• block	licensing	of	extraneous	analyses	
• Previously:

• all	Case	valuation	done	through	Agree
• ‘s	analyzed	as	a	pair:	root	‘s	+	d*	(categorizer)

• Now:
• distinguish	Inherent	from	Structural	Case
• Inherent	Case	does	not	involve	ɸ-features:	
means	<ɸ, ɸ>	labeling	not	available

• Structural	Case	involves	ɸ-feature	valuation,	
and	Nom	(or	Acc)	Case	for	C/T/	(or	v*/R)

• ‘s	analyzed	as	a	single	re-categorizing	head:	i.e.	
n	->	d

NEW

OLD

Improve	the	Framework:	Theory	Adjustment

Depth	=	6

Improve	the	Framework:	Combinatorics

• Orange	line:	adjusted	theory
• one	solution	@	6
• no	extraneous	solutions	@7-
10
• fewer	SOs	hypothesized

• Blue	line:	original	theory
• one	solution	@	6
• one	solution	@	7,	8
• five	solutions	@	9

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

lo
g1
0(
#S
O
s)

#	Merges

LOG10(#SOs Generated) vs.	#	Merges

1

1

1

1

5

Parallelism:	Job	size

Parallel	Processing	Task	Size

• Example:	
• say	we	want	to	search	to	depth	11	in	
parallel

• What	is	the	best	way	to	divvy	up	the	
search?	

• We	can	perform	the	same	search	by
expressing:
• 27	threads,	each	7	deep
• 121	threads,	each	6	deep
• 610	threads,	each	5	deep
• 3750	threads,	each	4	deep

• Tradeoff:
• thread	overhead	vs.	load	balancing	

• (task	size	not	a	constant)
• RAM	wrt.	#	active	threads	limits	task	size1 3 8 27 121 610

3750

25796

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

1 2 3 4 5 6 7 8

#SOs	vs	#Merges

Parallel	Processing	Task	Size:	Results

• Conditions:
• blue	line:	16	CPUs	used	(no	HTT);	
16	active	threads

• green	line:	same	16	CPUs	+	HTT;	
32	active	threads

• RAM:	128GB	capacity

• Best	results:
• HTT	on
• 610	threads	(from	6	deep	
initially),	each	job	is	5 deep

• used	≈	30GB	RAM
• cf.	4.7	split	used	≈	88GB
• cf.	6.5	split	used	≈	15GB

1100.18

848.07
913.16

1030.29

954.64

726.43 701.54
775.78

27 121

610

3750

0

500

1000

1500

2000

2500

3000

3500

4000

0

200

400

600

800

1000

1200

4.7 5.6 6.5 7.4

Th
re
ad
s

W
al
lti
m
e	
(s
ec
s)

Split

Runtime	and	Threads

Runtime Runtime	HTT Threads

Conclusions

• Application	is	parallel-friendly
• search:	multiple	possible	operations	
• speed-up	results:	13x	on	32	logical	cores

• Speed-up	allows	us	to	search	deeper
• beyond	a	basic	analysis

• Improve	the	theory
• eliminate	extraneous	analyzes

0
100
200
300
400
500
600
700
800

0 2 4 6 8 101214161820222426283032

Ru
nt
im

e	
(s
)

#	concurrent	threads

Runtime	vs.	#	
concurrent	threads

Appendix

Extra	Analyses	Uncovered

Depth	=	9
d*P	=	{{{me,n},{{me,n},’s}},d*}
ESM	{friend,n}
ISM	‘s (?need	a	d	categorizer)
ISM	{{{me,n},{{me,n},’s}},d*}
ISM	{{me,n},’s}
ISM	{‘s,	{{friend,n},d*P}

Extra	Analyses	Uncovered

Depth	=	9

Extra	Analyses	Uncovered

Depth	=	9

Extra	Analyses	Uncovered

Depth	=	9

Extra	Analyses	Uncovered

Depth	=	9

