LING 696G: Lecture 3

Sandiway Fong

[book, n, [the, d]]

log10(Queue size)

Unconstrained queue size for [book,n,[the,d]]

10000000

1000000

100000

10000

1000

100

10

1

0

1

2

3

4 5
Merges

6

7

8

Infinite supra-exponential
expansion observed

At each Merge step, in
principle (subject to
availability), we may have a
choice of:

1.

2.
3.
4

External Set Merge (ESM)
Internal Set Merge (ISM)
External Pair Merge (EPM)
Internal Pair Merge (IPM)

Example: [book,n!case,[the,d]]

SO: book, Input: [n!case,[the.d]]

1 esm SO: {book,n!case}, Input: [[the d]]

11 ism SO: {book,{book,n!case}}, Input: [[the d]]

111 dws SO: the, Input: [d]

11 esm SO: {the,d}, Input: []

11 ipm SO: <{the d}the>, Input: []
1 1 uws SO: {book,{book,n!case}}, Input: [<{the,d},the>]
11 1ism SO: {{book,n!case},{book,{book n!case}}}, Input: [<{the,d} the>]
1111 esm *mergeR SO: {{{book,n!case},{book,{book,n!case}}},<{thed} the>}, Input: []
112 esm *mergeR SO: {{book,{book n!case}} ,<{the,d}the>}, Input: []
2 ism SO: {the {the,d}}, Input: []

2 1 uws SO: {book,{book,n!case}}, Input: [{the {the,d}}] L4 Fi N |te ex pa NS | ono bse rve d

1

1

1

1

1

1

121 1ism SO: {{book,n!case} ,{book,{book,n!case}}}, Input: [{the {the,d}}]
12111 esm *mergeR SO: {{{book,n!case},{book,{book,n!case}}},{the,{the,d}}}, Input: [] H : H ()

121 2 esm *mergeR SO: {{book,{book,n!case}},{the,{the,d}}}, Input: [] W It h re St rl Ct I O n S T B D

1 3 uws SO: {book,{book n!case}}, Input: [{the,d}] I

13 1 epm *mergeR SO: <{the,d},{book,{book,n!case}}>, Input: [] L4 Th eres on Iy one Way tO
132 ism SO: {{book,n!case} ,{book,{book,n!case}}}, Input: [{the,d}]

1321 epm *mergeR SO: <{the.d},{{book n!case},{book,{book,n!case}}}>, Input: [] a SS e m b I e .

1322 esm *mergeR SO: {{{book,n!case},{book,{book,n!case}}},{thed}}, Input: [] .

113 3 esm *mergeR SO: {{book,{book,n!case}} ,{the,d}}, Input: []

12 dws SO: the, Input: [d] <{the, d}, {bOOk, n}>
121 esm SO: {the,d}, Input: []

121 1ipm SO: <{the,d} the>, Input: []

1211 1uws SO: {book,n!case}, Input: [<{the,d} the>]

12111 1ism SO: {book,{book,n!case}}, Input: [<{the,d} the>]

1211111 esm *mergeR SO: {{book,{book n!case}},<{the,d} the>}, Input: []

11

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
11

121112 esm *mergeR SO: {{book,n!case},<{the,d} the>}, Input: [] LIs:[book n!case,[the,d]] Derivation #1
121 2ism SO: {the,{the,d}}, Input: [] Step [Branch [Op [SO

12121 uws SO: {book,n!case}, Input: [{the,{the,d}}] 1 _ _ book

12121 1ism SO: {book,{book,n!case}}, Input: [{the,{the,d}}]

121211 1esm *mergeR SO: {{book,{book n!case}}.{the,{the.d}}}, Input:] 2 | esm [{book;nicase}
12121 2esm *mergeR SO: {{book,n!case},{the,{the,d}}}, Input: [] 3 P2 dws [the

1213 uws SO: {book,n!case}, Input: [{the,d}] 4 1 esm [{thed}

12131 epm *end SO: <{the,d},{book,n!case}> 5 3 uws |{book,n!case}
1213 2ism SO: {book,{book,n!case}}, Input: [{the,d}] 6 1 epm |<{the,d},{book,n!case}>
121321 epm *mergeR SO: <{the,d},{book,{book,n!case}}>, Input: [] Spellout heads: [the]

121322 esm *mergeR SO: {{book,{book n!case}} ,{the,d}}, Input: [] Final output: [the]

121 33 esm *unlabeled SO: {{book,n!case},{the,d}}, Input: []

What restrictions make sense?

Research Program:

* Let's entertaln my hopeful hypothesis that basic assumptions about
grammar + 34 factor constraints will be sufficient to make Free Merge

viable ..

Root R Possible cases:
er k {R, k}
Categorizer {k, {R, XP}} kc-commandsR
* all roots must be categorized
 all categorizers must categorize (exactly once) llicit cases:
. . <R, k> Root invisible to k
Iocallty <k, R> k cannot categorize

{k, {x, R}} no intervening head x

Restrictions from grammar

* Lexicon:
* roots: friend, john, like
 categorizers: n, d, v¥, v

* Merge Restrictions:
* (a) roots must be categorized (as soon as possible)
* (b) each categorizer must find its root (with no intervening heads)

* (c) categorizers can only categorize once
« e.g.x{c, {R, {c, R}}}
formed with only two Lls, c and R (R=root, c=categorizer)
n has unvalued features uCase, uTheta

What 3" factor restrictions make sense?

* Infinite Loops:
 caused by internal Merge (set and pair) only
 enlarges current syntactic object (SO) without bound

* Note: phase-based labeling is not sufficient to limit the damage: i.e. SO can be
enlarged indefinitely before reaching v* or C.

* Hypothesis:

* Suppose FL always (attempts to) block infinite loops (computational minimalism)

* Implementation:
» potential infinite loops are always blocked at the first opportunity
* a pattern mis a sequence of Merge operations; e.g. ISM(a), ISM(b), ISM(a), ISM(b)
* use an IM pattern repetition detector: *nm = *m?*
* there is only one kind of repetition permitted (i.e. none),
e.g. no rule *m°* (i.e. you can repeat up to 4 times but not more)

What 3" factor restrictions make sense?

Example:
» consider {a,b} with Internal Set Merge (ISM)
* block repetitive patterns m?* (which all lead to infinite loops)

* e.g. {a,b} =ISM(a)*2 => {a,{a,{a,b}}} =*=> {a,{a,..{a,b}..}}

* e.g. {a,b} =1SM(a,b)*2 => {b,{3,{b,{a,{a,b}}}}} =*=> {b,{a,..{b,{3,{3,b}}}..}}

Other Infinite Loops

* [M pattern: *mrmr = *m?*
* There are more complicated types of infinite loops we can choose to block...

* Example:

1. {a,b} (ESM)

2. {a, {a,b}} (ISM of a)

3. {{a,b}, {a,{a,b}}} (ISM of {a,b})

4. {{afa,b}}, {{a,b},{a,{a,b}}}} (ISM of {a,{a,b}})

5. {{{a,b}{a,{a,b}}},{{a,{a,b}},{{a,b},{a,{a,b}}}}} (ISM of {{a,b},{a,{a,b}}})
and so on...

* this not a simple pattern, see below (but it can be blocked programmatically):
* ISM(a) ISM({a,b}) ISM({a,{a,b}}) ISM({{a,b},{a,{a,b}}})

Restrictions from grammar

* Yet another kind: lemmas: (can be applied proactively)
e Let uF = unvalued feature F
* rule: unvalued features must be valued

» e.g. can’t External Pair Merge (EPM) B[uF] to a forming <B, a>, where B is an
adjunct

* since B is no longer accessible to operations, adjunct with uF can never get
valued

What 3" factor restrictions make sense?

No duplicate SOs

* In just three steps, Internal Set Merge (ISM)
with blind selection can create dupllcates
SOs

* Example:

in {x,{x, y}}
by selecting either copy of x,
ISM can create same SO { x,{ x,{ x, y}}}

e Derivation Tree:

Start: SO: x, Input: [y]

1.esm, SO: {x, y}, Input: []

1.1.1sM, SO: {x,{x, y}}, Input: []
1.1.1.sMm, SO: {x, {x, {x, y}}}, Input: []
1.1.2.1sm, SO: {{x, y}L{x,{x, y}}}, Input: []
1.1.3.1sm, SO: {x, {x, {x, y}}}, Input: []
1.1.4.5m, SO: {y, {x, {x, y}}}, Input: []

1. 2.sm, SO: {y, {x, y}}, Input: []

1. 2. 1.1sm, SO: {y, {y, {x, Y}}}, Input: []
1.2.2.1sm, SO: {{x, v}, {y ,{x, y}}}, Input: []
1.2.3.1sM, SO: {x, {y, {x, y}}}, Input: []
1.2.4.1sm, SO: {y, {y, {x, y}}}, Input: []

Duplicates vs. No Duplicates

i E“minating duplicate SOS: Number of SOs: logscale
» X-axis: number of Set Merges (SM) 1200 .
. Y-axis @é - number of SOs built But no duplicates means a more
* Y-axis = : log number of SOs built oo POWerful ISM proof system

Memoization: i.e. it must be able to spot
.00 duplicates locally

Orange line: allowing duplicates
Blue line: with no duplicates

10000000 6.00
9000000
8000000 2.00
7000000
6000000
2.00
5000000
4000000
3000000 0.00
1 2 3 4 5 6 7 8
2000000
1000000 ==l==|0g(#S0s) log(#Nodups SOs)

Restrictions from grammar

* It’s tempting to limit the ranﬁe of * For Pair Merge (PM), in <x,y>, x is
Internal Merge (IM); but suc invisible to SELECT
stipulations require justification e assume same SELECT is used for
« Example: Internal Set Merge (ISM) both IM operations
* SELECT (proper) sub-SO * Example: SELECT sees SO as

{b,<c,{d,e}>} below:

. m°eaSr(])S'{:a {b, c}} * SO:<a,<z,{b,<c,{d,e}>}>>
1. {a, {b, c}} NO ¢ <a,<z,{b,<c,{d,e}>}>> NO
2. a
3. {b,c} b
4. b
5 ¢ * <c,{d,e}>
e d

Restrictions from grammar

* Internal Set Merge (ISM) e Example:
e SOx={..{.x..}..} * the professor of John’s that he always
e SELECT X’ a (proper) sub-SO of x praises (Cecchetto & Donati, 2015:71)
. | using IPM:
e produce {x’{..{..x"..}.. our proposa
P { ’{ { } }} <professor,[of [John [‘s professer]]]>
* Internal Pair Merge (IPM) counts as a head for relabeling
o ’ * SELECT chooses professor from John’s
SELECT X" a (proper) sub-SO of x orofessor
e produce <{.{.x..}.} x> « IPM allows it to be a “new” head and not
. > oy’) violate C&D’s constraints on relativization
Wha:h?zom' <Xt"f”{bux ti}>| of (and avoids their Late Merge solution)
prgnmiwgnvzg?orzelzztedssﬁgfs& * Other (different) definitions of IPM:
* also would permit flip-flop between * Richards (2009) etc.
adjunct (invisible) and non-adjunct « EKS (2016)

(visible)

Resu

ting system

Notation:

Set Merge (SM): {a.,8}; Pair Merge (IM): <a.,3>, a is adjunct. o!F means o has unvalued feature F.
Workspace (WS) = Syntactic Object (SO) + unprocessed Lexical Items (LIs).
Initial WS: LIs = a list of heads ([...]) to be processed in order. 1st(LIs) denotes the first element. Initial SO = 1st(LIs).
Sub-WS: a sub-list defines a sub-WS. Compute a sub-SO that substitutes for the sub-list in the higher WS.

Derivation Tree (DT) examples:

(3)op v s0 []

Each line encodes one step of the DT. Formats:
(1) op SO Input
(2) op *Reason SO Input (blocked)

(non-leaf step)

(convergent step)

Explanation:

op = previous operation resulting in SO; Input = LIs remaining
Reason = a restriction (or end) blocking SO

(end: labeled SO computed but unvalued features still present)

esm SO: {{friend,n!case} like}, Input: [v¥]
1P ism SO: {{friend,n!case},{{friend,n!case} like}}, Input: [v¥]
2Pesm SO: {{{friend,n} like},v*}, Input: []

(Click on P to extend the derivation one step.)

Explanation:
from SO {{friend,n!case} like}, there are two possible ways to proceed:
(1) ism of {friend,n!case} (object shift), or (2) esm of v*.

1
2

SO: book, Input: [n!case,[d the]]

3 esm SO: {book,n!case}, Input: [[d,the]]

Explanation: (greyed out = blocked derivation)

from SO book, epm of n!case is blocked (*) in 1 and 2 by restrictions pmR and mergeR, resp.; however,

esm of n!case, option 3, is permitted.

Operations:

Operation

Restriction

Restriction Restriction

esm: External

epm: External PM

pmR: *<a[uF],B>

dup: duplicate SOs xmit: transmit INFL failure

SM <SO,1st(LIs)> or no unvalued features (uF) within eliminated phase head, e.g. C or v*, transmits inflectional (INFL) features to
{SO,1st(LIs)} <1st(LIs),SO> adjunct o lower head X, triggering Agree(X, B), B a goal

ism: Internal dws: Down WS ipmR: disallow <{x,y} x> loop: IM repetitions cii: CI interface crash

SM begin computing sub-list from {x,y} disallowed uninterpretable formulae: *<nPnP>, *<dP,dP> (cf. <dP,nP>)
{a,SO},aa e.g. *ism a ism @, or *ism

sub-SO of SO o ism B ism a ism

ipm: Internal uws: Up WS mergeR: apply lexical unlabeled (SO): labeling algorithm:

PM (IPM) end sub-list computation; restrictions non-weak head X labels{X,YP}, R (root) and T weak weak head W labels {W,YPY} if strengthened; X
<SO,0>,aa SO to higher WS e.g. a categorizer must be the 1st labels {X,R};

sub-SO of SO SM'ed head above a Root <> labels {XP,{Y,ZP}} assuming identical ¢-features for XP and Y, strengthened Y labels {Y,ZP}

XP labels {XY,YP} if YP moves
Stipulation: n* strengthens R in {n* ,{R,XP}}

