LING 696G: Lecture 3
 Sandiway Fong

[book, n, [the, d]]

- Infinite supra-exponential expansion observed
- At each Merge step, in principle (subject to availability), we may have a choice of:

1. External Set Merge (ESM)
2. Internal Set Merge (ISM)
3. External Pair Merge (EPM)
4. Internal Pair Merge (IPM)
[^0]- Finite expansion observed with restrictions (TBD)
- There's only one way to assemble: $<\{$ the, d\}, \{book, n\}>

LIs:[book,n!case,[the,d]] Derivation \#1			
Step	Branch	Op	SO
1	-	-	book
2	1	esm	\{book,n!case $\}$
3	2	dws	the
4	1	esm	\{the,d $\}$
5	3	uws	\{book,n!case $\}$
6	1	epm	$<\{$ the,d $\},\{$ book,n!case $\}>$
Spellout heads: Spel Final output:			

Spellout heads: [the]
Final output: [the]

What restrictions make sense?

Research Program:

- Let's entertain my hopeful hypothesis that basic assumptions about grammar $+3^{\text {rd }}$ factor constraints will be sufficient to make Free Merge viable ...

Root R
Categorizer k

- all roots must be categorized
- all categorizers must categorize (exactly once)
- locality

```
Possible cases:
{R, k}
{k, {R, XP}} kc-commands R
```

Illicit cases:

$<R, \quad k>$	Root invisible to k
$<k, ~ R>$	k cannot categorize
$\{k,\{x, R\}\}$	no intervening head x

Restrictions from grammar

- Lexicon:
- roots: friend, john, like
- categorizers: $\mathrm{n}, \mathrm{d}, \mathrm{v}^{*}, \mathrm{v}$
- Merge Restrictions:
- (a) roots must be categorized (as soon as possible)
- (b) each categorizer must find its root (with no intervening heads)
- (c) categorizers can only categorize once
- e.g. $*\{c,\{R,\{c, R\}\}\}$
formed with only two Lls, c and R ($R=$ root, $c=$ categorizer)
n has unvalued features uCase, uTheta

What $3^{\text {rd }}$ factor restrictions make sense?

- Infinite Loops:
- caused by internal Merge (set and pair) only
- enlarges current syntactic object (SO) without bound
- Note: phase-based labeling is not sufficient to limit the damage: i.e. SO can be enlarged indefinitely before reaching v^{*} or C .
- Hypothesis:
- Suppose FL always (attempts to) block infinite loops (computational minimalism)
- Implementation:
- potential infinite loops are always blocked at the first opportunity
- a pattern π is a sequence of Merge operations; e.g. ISM(a), ISM(b), ISM(a), ISM(b)
- use an IM pattern repetition detector: ${ }^{*} \pi \pi={ }^{*} \pi^{2+}$
- there is only one kind of repetition permitted (i.e. none), e.g. no rule ${ }^{*} \pi^{5+}$ (i.e. you can repeat up to 4 times but not more)

What $3^{\text {rd }}$ factor restrictions make sense?

Example:

- consider \{a,b\} with Internal Set Merge (ISM)
- block repetitive patterns π^{2+} (which all lead to infinite loops)
- e.g. $\{a, b\}=\operatorname{ISM}(a)^{*} 2=>\{a,\{a,\{a, b\}\}\}=*=>\{a,\{a, . .\{a, b\} .\}$.
- e.g. $\{a, b\}=\operatorname{ISM}(a, b)^{*} 2=>\{\underline{b},\{a,\{b,\{a,\{a, b\}\}\}\}\}=*=>\{b,\{a, . .\{b,\{a,\{a, b\}\}\} .\}$.

Other Infinite Loops

- IM pattern: ${ }^{*} \pi \pi={ }^{*} \pi^{2+}$
- There are more complicated types of infinite loops we can choose to block...
- Example:

1. $\{\mathrm{a}, \mathrm{b}\}$
2. $\{a,\{a, b\}\}$
3. $\{\{a, b\},\{a,\{a, b\}\}\}$
4. $\{\{a,\{a, b\}\},\{a, b\},\{a,\{a, b\}\}\}\}$
5. $\{\{\{a, b\},\{a,\{a, b\}\}\},\{a,\{a, b\}\},\{\{a, b\},\{a,\{a, b\}\}\}\}\}$ and so on...

- this not a simple pattern, see below (but it can be blocked programmatically):
- ISM(a) ISM(\{a,b\}) ISM(\{a,\{a,b\}\}) ISM(\{\{a,b\},\{a,\{a,b\}\}\})

Restrictions from grammar

- Yet another kind: lemmas: (can be applied proactively)
- Let uF = unvalued feature F
- rule: unvalued features must be valued
- e.g. can't External Pair Merge (EPM) $\beta[$ UF] to α forming $\langle\beta, \alpha\rangle$, where β is an adjunct
- since β is no longer accessible to operations, adjunct with uF can never get valued

What $3^{\text {rd }}$ factor restrictions make sense?

No duplicate SOs

- In just three steps, Internal Set Merge (ISM) with blind selection can create duplicates SOs
- Example:
in $\{x,\{x, y\}\}$
by selecting either copy of x,
ISM can create same SO $\{x,\{x,\{x, y\}\}\}$
- Derivation Tree:

Start: SO: x, Input: [y]
1.ESM, SO: $\{x, y\}$, Input: []
1.1.Ism, SO: \{x,\{x, y\}\}, Input: []
1.1.1.ISM, SO: $\{x,\{x,\{x, y\}\}\}$, Input: []
1.1.2.ISM, SO: $\{\{x, y\},\{x,\{x, y\}\}\}$, Input: []
1.1.3.ISM, SO: $\{x,\{x,\{x, y\}\}\}$, Input: []
1.1.4.ISM, SO: $\{y,\{x,\{x, y\}\}\}$, Input: []

1. 2.ISM, SO: $\{y,\{x, y\}\}$, Input: []
2. 2. 1.ISM, SO: $\{y,\{y,\{x, y\}\}\}$, Input: []
1.2.2.ISM, SO: $\{\{x, y\},\{y,\{x, y\}\}\}$, Input: []
1.2.3.ISM, SO: $\{x,\{y,\{x, y\}\}\}$, Input: []
1.2.4.ISM, SO: \{y, \{y, \{x, y\}\}\}, Input: []

Duplicates vs. No Duplicates

- Eliminating duplicate SOs:

Number of SOs: logscale

- X-axis: number of Set Merges (SM)
- Y-axis β : number of SOs built
- Y-axis : log number of SOs built
- Orange line: allowing duplicates
- Blue line: with no duplicates

Restrictions from grammar

- It's tempting to limit the range of Internal Merge (IM); but such stipulations require justification
- Example: Internal Set Merge (ISM)
- SELECT (proper) sub-SO
- means:
- SO: $\{a,\{b, c\}\}$

1. $\{a,\{b, c\}\}$

No
2. a
3. $\{b, c\}$
4. b
5. c

- For Pair Merge (PM), in $\langle x, y\rangle, x$ is invisible to SELECT
- assume same SELECT is used for both IM operations
- Example: SELECT sees SO as $\{b,<c,\{d, e\}>\}$ below:
- SO: <a, <z,\{b,<c,\{d,e\}>\}>>
- <a,<z,\{b,<c,\{d,e\}>\}>>
- <z,\{b,<c,\{d,e\}>\}>
- $\{b,<c,\{d, e\}>\}$
-b
- <c,\{d,e\}>
- $\{d, e\}$

NO

- d
- e

Restrictions from grammar

- Internal Set Merge (ISM)
- SO x=\{..\{... $\left.\left.x^{\prime} ..\right\} ..\right\}$
- SELECT x^{\prime} a (proper) sub-SO of x
- produce $\left\{x^{\prime},\left\{. .\left\{. . x^{\prime} ..\right\} ..\right\}\right\}$
- Internal Pair Merge (IPM)
- SELECT x^{\prime} a (proper) sub-SO of x
- produce <\{..\{..x'..\}..\}, $x^{\prime}>$
- what about? $\left\langle x^{\prime},\left\{. .\left\{. . x^{\prime} ..\right\} ..\right\}>\right.$
- think we want to ban this (lack of prominence for selected sub-SO)
- also would permit flip-flop between adjunct (invisible) and non-adjunct (visible)
- Example:
- the professor of John's that he always praises (Cecchetto \& Donati, 2015:71)
- our proposal using IPM:
- <professor,[of [John ['s professor]]]> counts as a head for relabeling
- SELECT chooses professor from John's professor
- IPM allows it to be a "new" head and not violate C\&D's constraints on relativization (and avoids their Late Merge solution)
- Other (different) definitions of IPM:
- Richards (2009) etc.
- EKS (2016)

Resulting system

Notation:				
Set Merge (SM): $\{\alpha, \beta\}$; Pair Merge (IM): <,$\beta>, \alpha$ is adjunct. $\alpha!$ F means α has unvalued feature F. Workspace (WS) = Syntactic Object (SO) + unprocessed Lexical Items (LIs). Initial WS: LIs = a list of heads ([...]) to be processed in order. 1st(LIs) denotes the first element. Initial SO = 1st(LIs). Sub-WS: a sub-list defines a sub-WS. Compute a sub-SO that substitutes for the sub-list in the higher WS.				
Derivation Tree (DT) examples:				
Each line encodes one step of the DT. Formats:			Explanation: op = previous operation res Reason $=$ a restriction (or (end: labeled SO computed	in SO; Input = LIs remaining ocking SO valued features still present)
$\begin{aligned} & \text { esm SO: \{\{friend,n!case\},like\}, Input: [v*] } \\ & 1>\text { ism SO: }\{\{\text { friend,n!case }\},\{\{f r i e n d, n!c a s e\}, \text { like }\}\}, \text { Input: [v*] } \\ & 2>\operatorname{esm} \text { SO: }\left\{\left\{\{\text { friend,n\}, like }\}, \mathrm{v}^{*}\right\}, \text { Input: }\right] \\ & \text { (Click on to extend the derivation one step.) } \end{aligned}$			Explanation: from SO \{\{friend,n!case\} (1) ism of \{friend,n!case\}	here are two possible ways to proceed: shift), or (2) esm of v^{*}.
```SO: book, Input: [n!case,[d,the]] 1 cpm *pmR SO: <n!case,book>, Input: [[d,the]] 2 epm *mergeR(ext) SO: <book,n!case>, Input: [[d,the]] 3 esm SO: {book,n!case}, Input: [[d,the]]```			Explanation: (greyed ou from SO book, epm of n!ca esm of n!case, option 3, is	cked derivation)   locked (*) in 1 and 2 by restrictions pmR and mergeR, resp.; however, ted.
Operations:	Operation	Restriction	Restriction	Restriction
$\begin{array}{\|l} \text { esm: External } \\ \text { SM } \\ \{\mathrm{SO}, 1 \mathrm{st}(\mathrm{LIs})\} \\ \hline \end{array}$	$\begin{aligned} & \text { epm: External PM } \\ & \text { <SO,1st(LIs)> or } \\ & <1 \mathrm{st}(\mathrm{LIs}), \mathrm{SO}> \end{aligned}$	$\mathrm{pmR}: *<\alpha[\mathrm{uF}], \beta>$   no unvalued features $(\mathrm{uF})$ within adjunct $\alpha$	dup: duplicate SOs eliminated	xmit: transmit INFL failure phase head, e.g. C or $\mathrm{v}^{*}$, transmits inflectional (INFL) features to lower head $X$, triggering Agree $(X, \beta), \beta$ a goal
$\begin{aligned} & \text { ism: Internal } \\ & \text { SM } \\ & \{\alpha, S O\}, \alpha \text { a } \\ & \text { sub-SO of SO } \end{aligned}$	dws: Down WS begin computing sub-list	ipmR: disallow $\langle\{\mathrm{x}, \mathrm{y}\}, \mathrm{x}>$ from $\{x, y\}$	loop: IM repetitions disallowed   e.g. ${ }^{\text {ism }} \alpha$ ism $\alpha$, or ${ }^{\text {ism }}$ $\alpha$ ism $\beta$ ism $\alpha$ ism $\beta$	cii: CI interface crash   uninterpretable formulae: *<nP,nP>, *<dP, dP> (cf. <dP,nP>)
ipm: Internal   PM (IPM)   $\langle$ SO, $\alpha>, \alpha$ a   sub-SO of SO	uws: Up WS end sub-list computation; SO to higher WS	mergeR: apply lexical restrictions e.g. a categorizer must be the 1st SM'ed head above a Root	unlabeled (SO): labeli non-weak head $X$ labels $\{X$ labels $\{\mathbf{X}, \mathrm{R}\}$;   < $\phi, \phi>$ labels $\{\mathrm{XP},\{\mathrm{Y}, \mathrm{ZP}\}\}$ XP labels $\{X Y, Y P\}$ if YP Stipulation: $\mathrm{n}^{*}$ strengthens	gorithm:   R (root) and T weak weak head W labels $\{\mathrm{W}, \mathrm{YP}\}$ if strengthened; X   ming identical $\boldsymbol{\phi}$-features for XP and Y , strengthened Y labels $\{\mathrm{Y}, \mathrm{ZP}\}$ $\left\{\mathrm{n}^{*},\{\mathrm{R}, \mathrm{XP}\}\right\}$


[^0]:    Example: [book,n!case,[the,d]]
    SO: book, Input: [n!case,[the,d]]
    1 esm SO: \{book,n!case\}, Input: [[the,d]]
    11 ism SO: \{book,\{book,n!case\}\}, Input: [[the,d]]
    111 dws SO: the, Input: [d]
    1111 esm SO: \{the,d\}, Input: []
    $11111 \mathrm{ipm} \mathrm{SO}: ~<\{$ the, d\}, the>, Input: []
    111111 uws SO: \{book,\{book,n!case\}\}, Input: [<\{the,d\},the>]
    1111111 ism SO: $\{\{$ book,n!case $\},\{$ book, $\{$ book,n!case $\}\}\}$, Input: $[<\{$ the,d $\}$,the $>$ ]
    11111111 esm *mergeR SO: $\{\{\{$ book,n!case $\},\{$ book, $\{$ book, $n!$ case $\}\}\},<\{$ the,d $\}$,the $>\}$, Input: []
    1111112 esm *mergeR SO: $\{\{$ book, book,n!case\}\},<\{the,d\},the>\}, Input: []
    11112 ism SO: \{the,\{the,d\}\}, Input: []
    111121 uws SO: \{book,\{book,n!case\}\}, Input: [\{the,\{the,d\}\}]
    1111211 ism SO: \{\{book,n!case\},\{book,\{book,n!case\}\}\}, Input: [\{the,\{the,d\}\}]
    11112111 esm *mergeR SO: $\{\{\{$ book,n!case\},\{book,\{book,n!case\}\}\},\{the,\{the,d\}\}\}, Input: []
    1111212 esm *mergeR SO: \{\{book,\{book,n!case\}\},\{the,\{the,d\}\}\}, Input: []
    11113 uws SO: \{book,\{book,n!case\}\}, Input: [\{the,d\}]
    111131 epm *mergeR SO: < $\{$ the, d\}, $\{$ book, $\{$ book,n!case $\}$ \}>, Input: []
    111132 ism SO: \{\{book,n!case\},\{book,\{book,n!case\}\}\}, Input: [\{the,d\}]
    1111321 epm *mergeR SO: <\{the,d\},\{\{book,n!case\},\{book,\{book,n!case\}\}\}>, Input: []
    1111322 esm *mergeR SO: \{\{\{book,n!case\},\{book,\{book,n!case\}\}\},\{the,d\}\}, Input: []
    111133 esm *mergeR SO: \{\{book,\{book,n!case\}\},\{the,d\}\}, Input: []
    12 dws SO: the, Input: [d]
    121 esm SO: \{the,d\}, Input: []
    1211 ipm SO: <\{the, d\},the>, Input: []
    12111 uws SO: \{book,n!case\}, Input: [<\{the,d\},the>]
    121111 ism SO: \{book,\{book,n!case\}\}, Input: [<\{the,d\},the>]
    1211111 esm *mergeR SO: $\{$ bbook, book,n!case $\}\},<\{$ the, d\}, the $>\}$, Input: []
    121112 esm *mergeR SO: \{\{book,n!case\}, $<\{$ the, d$\}$, ,the $>\}$, Input: []
    1212 ism SO: \{the,\{the,d\}\}, Input: []
    12121 uws SO: \{book,n!case\}, Input: [\{the,\{the,d\}\}]
    121211 ism SO: \{book,\{book,n!case\}\}, Input: [\{the,\{the,d\}\}]
    1212111 esm *mergeR SO: \{\{book,\{book,n!case\}\},\{the,\{the,d\}\}\}, Input: []
    121212 esm *mergeR SO: \{\{book,n!case\},\{the,\{the,d\}\}\}, Input: []
    1213 uws SO: \{book,n!case\}, Input: [\{the,d\}]
    12131 epm *end SO: <\{the,d\},\{book,n!case\}>
    12132 ism SO: \{book,\{book,n!case\}\}, Input: [\{the,d\}]
    121321 epm *mergeR SO: <\{the,d\},\{book,\{book,n!case\}\}>, Input: []
    121322 esm *mergeR SO: \{\{book,\{book,n!case\}\},\{the,d\}\}, Input: []
    12133 esm *unlabeled SO: \{\{book,n!case\},\{the,d\}\}, Input: []

