
LING/C SC 581: 
Advanced Computational Linguistics

Lecture 7



Today's Topic

• Leaving the topic of context-sensitive languages 
• Turn to writing our own CFGs for natural language:

1. agreement in natural language
2. the problem with Prolog & left recursion
3. a grammar transformation: 
• left recursive to right recursive BUT structure preserving

•Homework 4 (note deadline)



?- [nl1].
true.
?- s([the,man,kicked,the,ball], []).
true ;
false.
?- s([the,man,kicked,the,ball,into,touch], List).
List = [into, touch] ;
false.

nl1.prolog
• Example (nl1.prolog):

1. s --> np, vp.
2. np --> det, nn.
3. det --> [the] | [a].
4. nn --> [man] | [ball].
5. vp --> vtr, np.
6. vtr --> [kicked] | [hit].



nl1.prolog
• Enumerate the language:
?- s(List, []).

List = [the, man, kicked, the, man] ;

List = [the, man, kicked, the, ball] ;
List = [the, man, kicked, a, man] ;

List = [the, man, kicked, a, ball] ;

List = [the, man, hit, the, man] ;

List = [the, man, hit, the, ball] ;

List = [the, man, hit, a, man] ;

List = [the, man, hit, a, ball] ;
List = [the, ball, kicked, the, man] ;

List = [the, ball, kicked, the, ball] ;

List = [the, ball, kicked, a, man] ;

List = [the, ball, kicked, a, ball] ;

List = [the, ball, hit, the, man] ;
List = [the, ball, hit, the, ball] ;

List = [the, ball, hit, a, man] ;

List = [the, ball, hit, a, ball] ;

List = [a, man, kicked, the, man] ;

List = [a, man, kicked, the, ball] ;

List = [a, man, kicked, a, man] ;

List = [a, man, kicked, a, ball] ;
List = [a, man, hit, the, man] ;

List = [a, man, hit, the, ball] ;

List = [a, man, hit, a, man] ;

List = [a, man, hit, a, ball] ;

List = [a, ball, kicked, the, man] ;
List = [a, ball, kicked, the, ball] ;

List = [a, ball, kicked, a, man] ;

List = [a, ball, kicked, a, ball] ;

List = [a, ball, hit, the, man] ;

List = [a, ball, hit, the, ball] ;

List = [a, ball, hit, a, man] ;
List = [a, ball, hit, a, ball].



nl2.prolog
• Recovering a parse tree

• we use a term data structure for the tree
• simple transformation: adding an extra argument to all nonterminals

• Example (nl2.prolog):
1. s(s(NP, VP)) --> np(NP), vp(VP).
2. np(np(DET, NN)) --> det(DET), nn(NN).
3. det(dt(the)) --> [the].
4. det(dt(a)) --> [a].
5. nn(nn(man)) --> [man].
6. nn(nn(ball)) --> [ball].
7. vp(vp(VTR, NP)) --> vtr(VTR), np(NP).
8. vtr(vbd(kick_ed)) --> [kicked].
9. vtr(vbd(hit_ed)) --> [hit].

Note: I can return any term I like

Basic transformation:
x --> y, z.
x(x(Y, Z)) --> y(Y), z(Z).



nl2.prolog

• Example:
?- [nl2].
true.

?- s(Parse, [the, man, kicked, the, ball], []).
Parse = s(np(dt(the), nn(man)), vp(vbd(kick_ed), np(dt(the), 
nn(ball)))).



SWISH

:- use_rendering(svgtree, [list(false)]).

https://swish.swi-prolog.org

https://swish.swi-prolog.org/


Extra Arguments: Agreement

• Idea:
• We can also use an extra 

argument to impose constraints 
between constituents within a 
DCG rule

• Example: 
• English number agreement between 

DT and NN
• Data:

• the man the men
• a man *a men

• Lexical Features (Number):
• man value singular (sg)
• men value plural (pl)
• the value singular or plural (sg/pl)
• a value singular (sg)

*

* means ungrammatical



Extra Arguments: Agreement

• Example (nl3.prolog):
1. s(s(NP, VP)) --> np(NP), vp(VP).
2. np(np(DET, NN)) --> det(DET, NUM), nn(NN, NUM).
3. det(dt(the), sg) --> [the].
4. det(dt(the), pl) --> [the].
5. det(dt(a), sg) --> [a].
6. nn(nn(man), sg) --> [man].
7. nn(nn(men), pl) --> [men].
8. nn(nn(ball), sg) --> [ball].
9. vp(vp(VTR, NP)) --> vtr(VTR), np(NP).
10.vtr(vbd(kick_ed)) --> [kicked].
11.vtr(vbd(hit_ed)) --> [hit].



Extra Arguments: Agreement
Note:
• Use of the extra 

argument NUM for 
agreement here is 
basically “syntactic 
sugar” and lends no 
more expressive power 
to the grammar rule 
system

• i.e. we can enforce 
agreement without the 
use of the extra 
argument at the cost of 
writing more rules

• Instead of
np(np(DET, NN)) --> det(DET, NUM), nn(NN, NUM). 

we could have encoded NUM into the nonterminal name:
np(np(DET, NN)) --> det_sg(DET), nn_sg(NN).
np(np(DET, NN)) --> det_pl(DET), nn_pl(NN).
det_sg(dt(the)) --> [the].
det_pl(dt(the)) --> [the].
det_sg(dt(a)) --> [a].
nn_sg(nn(man)) --> [man].
nn_pl(nn(men)) --> [men].
nn_sg(nn(ball)) --> [ball]. nl4.prolog



Left recursion and Prolog grammars

Left recursive grammars:
• given Prolog’s left-to-right depth-first computation rule, left 

recursive rules are a no-no …

• Example (left.prolog):
1. s --> x, y.
2. x --> x, [a]. 
3. x --> [a].
4. y --> [b]. 

s

x

x

x

x
...

rule for nonterminal x
immediately calls x again!

6.7 million 
calls later



Left recursion and Prolog grammars

• Example (left.prolog):
1. s --> x, y.
2. x --> x, [a]. 
3. x --> [a].
4. y --> [b]. 

• An idea (swap rules 2 and 3):
1. s --> x, y.
2. x --> [a].
3. x --> x, [a]. 
4. y --> [b]. 

• (left2.prolog)

; eventually 
calls for 
stacking rule 3.
12 million deep



Big picture question

• Is this just a theoretical problem: i.e. not a problem for natural 
language grammars?
• Unfortunately it is a problem …
• John saw the boy with a telescope
• is structurally ambiguous wrt. attachment of the PP with a 

telescope
• (PP = prepositional phrase)



Preposition Phrase (PP) Attachment

• The preferred syntactic analysis is a left recursive parse
• Example:

• John saw the boy with a telescope 

withpossessive

withinstrument

Rules are:
vp --> vp, pp.
np --> np, pp.



Preposition Phrase (PP) Attachment

https://parser.kitaev.io

Incorrect rule used:
vp --> vbd, np, pp.

https://cloud.google.com/natural-language

dependency parse (essentially same problem):
root is saw
root --> prep
root --> dobj.

https://parser.kitaev.io/
https://cloud.google.com/natural-language


nl5.prolog
Live programming
• Let's add to nl3.prolog so we can parse:
• John saw the boy with a telescope 

• Need to add:
• verb (VBD): saw – past tense (-ed)
• preposition (IN): with
• singular nouns (NN): telescope, boy, limp
• proper noun (NNP): john ('John'), mary – initial caps = variable

• Need to add:
• PP attachment to NP and VP rules



Penn Part-of-Speech (POS)Tagset

Jurafsky & Martin ed3. draft



Preposition Phrase (PP) Attachment

• The preferred syntactic analysis is 
a left recursive parse
• notice we can “stack” the PPs, as 

in:
• John saw the boy with a limp with

Mary with a telescope 
• with-ambiguity: 

• withpossessive , 
• withaccompaniment, 
• withinstrument



Preposition Phrase Attachment

• Linguistically: 
• PP (recursively) adjoins to NP or VP
• np(np(NP,PP)) --> np(NP), pp(PP).
• vp(vp(VP,PP)) --> vp(VP), pp(PP).

• Left recursion gives Prolog problems
• Derivation (top-down, left-to-right):

1. vp
2. vp pp
3. vp pp pp
4. vp pp pp pp
5. vp pp pp pp pp infinite loop…

Note: 
only the parse tree argument shown here 
other extra arguments are possible



Transformation

• Apply the general left to right recursive transformation:

• to the NP rules:
1. np(np(DT,NN)) --> dt(DT,Number), nn(NN,Number).
2. np(np(NP,PP)) --> np(NP), pp(PP).

x(x(X,y)) --> x(X), [y].
x(x(z)) --> [z].

[z]

[y]xx

x(X) --> [z], w(X,x(z)).
x(x(z)) --> [z].
w(W,X) --> [y], w(W,x(X,y)).
w(x(X,y),X) --> [y].

Note:
w is a fresh
nonterminal
that takes 2
arguments

x is the recursive nonterminal



Transformation

• Consider input strings: Parse: Transformed rules:
1. [z] x(z) 2
2. [z, y] x(x(z),y) 1 + 4
3. [z, y1, y2] x(x(x(z),y1),y2) 1 + 3 + 4

1. x(x(X,y)) --> x(X), [y].
2. x(x(z)) --> [z]. 1. x(X) --> [z], w(X,x(z)).

2. x(x(z)) --> [z].
3. w(W,X) --> [y], w(W,x(X,y)).
4. w(x(X,y),X) --> [y].

Steps for example 3:
[z, ●y1, y2] rule 1: call nonterminal w(X,x(z))
[z, y1, ●y2] rule 3: call nonterminal w(X,x(x(z),y1))
[z, y1, y2●] rule 4: answer X = x(x(x(z),y1),y2)

the left recursive structure
formed by a right recursive
parse of [z, y1, y2]



Homework 4

• Q1: apply the transformation to the left recursion in nl5.prolog:
• np(np(NP,PP)) --> np(NP), pp(PP).
• vp(vp(VP,PP)) --> vp(VP), pp(PP).

• Show your grammar working properly on example sentences:
1. the boy saw the man with the telescope
2. the boy with the telescope saw the man
3. the boy kicked the man with the telescope
4. the boy with the telescope kicked the man
5. the boy with the telescope kicked the man with the limp

• Show all possible parses (;) until false in each case
• Q2: suggest a way to limit overgeneration (no need to implement)



Homework 4

• Hint #1: consider the case when there are multiple base rules for x
• x(x(X,y)) --> x(X), [y].
• x(x(z)) --> [z].
• x(x(w)) --> [w].
• Hint #2: w must be a fresh nonterminal, i.e. cannot be shared

between the NP and VP recursions. Why?
• You can ask questions about the homework in class Tuesday



Homework 4

• Submit to sandiway@arizona.edu
• SUBJECT: 581 Homework 4 YOUR NAME
• One PDF file (for grading) 

• include your grammar code and SWI-Prolog screenshots in your answer

• Attach (if I need to run your code):
• source code for your grammar

• Deadline:
• midnight Wednesday (assume HW needs more time)
• we will review the homework on Thursday

mailto:sandiway@arizona.eduSUBJECT

