
LING/C SC 581: 
Advanced Computational Linguistics

Lecture 4



Today's Topic

• Homework 2 Review
•We must refamiliarize ourselves with Prolog 
• Definite Clause Grammars (DCG) quick review
• introduced last semester
• 538 lectures 24–27 (see course website)

•Where we are going – context-sensitive grammars (CSG's)



Homework 2 review

• Garden path sentence: 
• humans initially mis-parse the sentence but eventually find the intended 

reading. 
• Q1: Explain why this is a  garden path sentence:
• The old man the boat
Which word causes the garden path?



Homework 2 review

• Which word causes the garden path?
• The old man the boat

• Merriam Webster online:
• https://www.merriam-webster.com/dictionary/man

https://www.merriam-webster.com/dictionary/man


Homework 2 review

• Which word causes the garden path?
• The old man the boat

• Merriam Webster online:
• https://www.merriam-webster.com/dictionary/man

https://www.merriam-webster.com/dictionary/man


Homework 2 review

• many explanations exist on the internet!
• ChatGPT knows about garden path sentences



Homework 2 review

https://en.wikipedia.org/wiki/Garden-path_sentence

Why do we garden path?
Possible explanation:
• frequency of sequence DET 

ADJ NOUN blocks 
possibility that NOUN is 
also a VERB

https://en.wikipedia.org/wiki/Garden-path_sentence


Homework 2



Convincing ChatGPT it is wrong

• Involves Knowledge of Language we take for granted:
1. verbs vs. nouns
2. word senses
3. notion of a grammatical relation
4. notion of a grammatical function

what are 
these 

precisely?

does 
ChatGPT 

understand 
them?



Chomsky LGB (1980)

• GFs: subject-of, object-of



Chomsky LGB (1980)

• configurationally defined [S NP …], [VP NP …]



Homework 2



Convincing ChatGPT it is wrong

•More informally, some of you used terms like:
• hidden verb
• culprit
• etc.



Homework 2



Microsoft 
CoPilot

(uses 
ChatGPT 4)



SWI Prolog Cheatsheet
• At the prompt ?-

1. halt. ^D
2. listing. listing(name). 
3. [filename]. loads filename.pl
4. trace.
5. notrace.
6. debug.
7. nodebug.
8. spy(name).
9. pwd.
10. working_directory(_,Y).

switch directories to Y
• Anytime

• ^C (then a(bort) or h(elp) for other 
options)

Notation:
\+ negation
,  conjunction
;  disjunction
:- if
Facts:
predicate(Args).
Rules:
p(Args) :- q(Args) ,.., r(Args).
Data structures:
list: [a,..b]
empty list: []
head/tail: [head|List]
Atom:
name, number
Term:
functor(arguments)
arguments: comma-separated terms/atoms



Derivations

• Prolog’s computation rule:
• Try first matching (grammar) rule in the database

(but remember other possibilities for backtracking)
• Backtrack if matching rule leads to failure (or if asked by the user typing ;)
• Auto-management of alternative possibilites: 

• undo variable bindings (i.e. undo assignments) and try next matching rule

• For grammars:
• Top-down left-to-right derivations
• left-to-right = expand leftmost nonterminal first
• Leftmost expansion done recursively = depth-first



Definite Clause Grammars (DCG)

• a grammar is code, could be a recognizer program:
• no need to write a separate grammar rule interpreter (in this case)

• Example query
• ?- s([a,a,b,b,b],[]). Yes

• Note:
• Syntax of DCGs:

• ---> "expands to"
• terminal symbol enclosed in square brackets:  [terminal]
• non-terminal symbol, otherwise

• Query uses the start symbol swith two arguments: 
• (1) sequence (as a list) to be recognized and 
• (2) the empty list []

Grammar for a+b+

apbp.prolog:
1. s --> [a],b.
2. b --> [a],b.
3. b --> [b],c.
4. b --> [b].
5. c --> [b],c.
6. c --> [b].



Definite Clause Grammars (DCG)

Infinite Loop: 
• Doesn't enumerate at all!



Definite Clause Grammars (DCG)

Partial enumerator only! Why?



Definite Clause Grammars (DCG)

type w



Extra Argument: Parse Tree

• Recovering a parse tree
• when want Prolog to return more than just true/false answers
• in case of true, we can compute a syntax tree representation of the parse
• by adding an extra argument to nonterminals

Example (sheeptalk.prolog)
• DCG (non-regular, context-free):
s --> [b], [a], a, [!].

a --> [a].    (base case)
a --> [a], a. (recursive case)

s

a !

a

a

a

a

b



Extra Argument: Parse Tree

$ swipl
Welcome to SWI-Prolog (threaded, 
64 bits, version 9.0.4)
?- [sheeptalk].
true.
?- s(String, []).
String = [b, a, a, !] ;
String = [b, a, a, a, !] ;
String = [b, a, a, a, a, !] ;

String = [b, a, a, a, a, a, !] .

?- s([b,a,a,!], []).
true ;
false.

?- s([m,o,o,!], []).
false.

• want Prolog to return more than just true/false answers



Extra Argument: Parse Tree

• Tree:
• Prolog term data structure:
• hierarchical
• allows sequencing of arguments
• functor(arg1,..,argn)
• each argi could be another term

or simple atom

s

a !

a

a

a

a

b

s(b,a,a(a,a(a)),!)



Extra Arguments: Parse Tree

• Sheeptalk DCG
• s --> [b],[a], a, [!].
• a --> [a]. (base case)
• a --> [a], a. (right recursive case)

• base case
– a --> [a].
– a(subtree) --> [a].
– a(a(a)) --> [a].

• recursive case
– a --> [a], a.
– a(subtree) --> [a], a(subtree).
– a(a(a,A)) --> [a], a(A).

s

a !

a

a

a

a

b

s(b,a,a(a,a(a)),!)

Idea: for each nonterminal, 
add an argument to store its 
subtree



Extra Arguments: Parse Tree

• Prolog grammar
• s --> [b], [a], a, [!].
• a --> [a]. (base case)
• a --> [a], a. (right recursive case)

• base and recursive cases
– a(a(a)) --> [a].
– a(a(a,A)) --> [a], a(A).

• start symbol case
– s --> [b], [a], a, [!].
– s(tree) --> [b], [a], a(subtree), [!].
– s(s(b,a,A,!) ) --> [b], [a], a(A), [!].

s

a !

a

a

a

a

b

s(b,a,a(a,a(a)),!)



Extra Arguments: Parse Tree

• Prolog grammar
• sheeptalk.prolog
• s --> [b], [a], a, [!].
• a --> [a]. (base case)
• a --> [a], a. (right recursive case)

• Equivalent Prolog grammar computing a parse
• sheeptalk2.prolog
– s(s(b,a,A,!)) --> [b], [a], a(A), [!].
– a(a(a)) --> [a].
– a(a(a,A)) --> [a], a(A).



Extra Arguments: Parse Tree
?- [sheeptalk2].
true.
?- s(Parse, String, []).
Parse = s(b, a, a(a), !),
String = [b, a, a, !] ;
Parse = s(b, a, a(a, a(a)), !),
String = [b, a, a, a, !] ;
Parse = s(b, a, a(a, a(a, a(a))), !),
String = [b, a, a, a, a, !] ;
Parse = s(b, a, a(a, a(a, a(a, a(a)))), 
!),
String = [b, a, a, a, a, a, !] ;
Parse = s(b, a, a(a, a(a, a(a, a(a, 
a(a))))), !),
String = [b, a, a, a, a, a, a, !] .



Extra Arguments: Parse Tree

?- [sheeptalk2].
true.
?- s(Parse, [b,a,a,!], []).
Parse = s(b, a, a(a), !) ;
false.
?- s(Parse, [m,o,o,!], []).
false.



Extra Arguments

• Extra arguments are powerful
• they allow us to impose (grammatical) constraints and change the 

expressive power of the system 
• if used as read-able memory

• Example: 
• anbncn n>0 is not a context-free language (type-2, Chomsky hierarchy)
• i.e. you cannot write rules of the form X --> RHS that generate this language
• in fact, it's context-sensitive (type-1, Chomsky hierarchy)


