LING/C SC 581:

Advanced Computational Linguistics

Lecture 13

Administrivia

* I'll be away next week (and the following week)

* Week after next is Spring Break anyway

* Lecture 14 will be pre-recorded and posted on the course website
* There will be a homework for Lecture 14 (easy)

Today's Topics

* Homework 6

* Context-Free Parsing:
* Dotted rules
* the Shift Reduce Parsing Algorithm

Homework 6

* Rewrite nl5.prolog below into a file nl5.txt (for nltk's grammar formalism)
* implement NUM agreement using the nonterminal name (see Lecture 7)
* ignore the parse tree representation (Prolog term)

* don't worry about the left recursive rules

* nl5.prolog:

s(s(NP, VP)) ——> np(NP), vp(VP).

np(np(DET, NN)) —--> det(DET, NUM), nn(NN, NUM).

np(np(NNP)) ——> nnp(NNP).

np(np(NP,PP)) ——> np(NP), pp(PP).

pp(pp(IN,NP)) —-—> in(IN), np(NP).

det(dt(the), sg) ——> [the].

det(dt(the), pl) —— [the].

det(dt(a), sg) —-— [al.

nn(nn(man), sg) -—> [man].

nn(boy), sg) ——> [boy].
(telescope), sg) ——> [telescopel.

(limp), sg) -—> [limp].

(men), pl) -—> [men].

nn (
nn(nn
nn(nn
nn(nn

(ball), sg) ——> [ball].
(VTR, NP)) ——> vtr(VTR), np(NP).

nn(nn
vp(vp
vp(vp(VP,PP)) ——> vp(VP), pp(PP).
vtr(vbd(kick_ed)) —-—> [kicked].
vtr(vbd(hit_ed)) —-—> [hit].
vtr(vbd(see_ed)) ——> [saw].
in(in(with)) --> [with].
nnp(nnp(john)) ——> [john].

nnp(nnp(mary)) ——> [mary].

Homework 6

* Documentation:
- string = open("nl5.txt").read()

https://www.nltk.org/howto/grammar.html

https://www.nltk.org/api/nltk.grammar.html

>>> grammar = CFG.fromstring("""
.S->AB
. A->"a'
. # An empty string:

ee- B =>"'p" | '

>>> from nltk import CFG
>>> grammar = CFG.fromstring('

S -> NP VP
PP -> P NP

NP -> Det N | NP PP
VP -> V NP | VP PP

Det -> 'a' | 'the'

N -> 'dog' | 'cat'

V -> 'chased' | 'sat'
P ->"on’ | "1n’

2islis),

Homework 6

* Test your grammar on the following examples (making sure you get
all parses) with the nltk chart parser:
1. the boy kicked a ball
*a men kicked a ball
a man kicked the ball
John saw a man with a telescope
a man saw the boy with a ball with a telescope
* = ungrammatical

torOLNbd

Homework 6

* Submit to sandiway@arizona.edu
« SUBJECT: 581 Homework 6 YOUR NAME
* One PDF file (for grading)

* include your grammar code and nltk screenshots in your answer

e Attach (if | need to run your code):
* source code for your grammar

* Deadline:
* midnight Monday
* we will review the homework next lecture (recorded)

mailto:sandiway@arizona.eduSUBJECT

Dotted Rules

Dot (@) indicates where we are in a grammar rule

 Examples:
«S —> @ NP VP [the, man, saw, the, dog]
«S —> NP @ VP [saw, the, dog]
«S —>NP VP @ []
«VP —> @ V NP [saw, the, dog]
«VP —> V @ NP [the, dog]
VP —> V NP @ []
- NP —> @ DT NN [the, man, saw, the, dog]
« NP —> DT @ NN [man, saw, the, dog]

NP —> DT NN o [saw, the, dog]

Bottom-Up Parsing

* We've already seen the CKY algorithm

* LR(0) parsing
* An example of bottom-up tabular parsing
* 0 =zero symbols of lookahead, generally N (a bit like the left corner idea)

* Similar to the top-down Earley algorithm described in the textbook in
that it uses the idea of dotted rules

* finite state automata revisited...

Tabular Parsing

- e.g. LR(k) (Knuth, 1960)

* invented for efficient parsing of programming languages

* disadvantage: a potentially huge number of states can be generated when the number
of rules in the grammar is large

* can be applied to natural languages (Tomita 1985)
* build a Finite State Automaton (FSA) from the grammar rules, then add a stack
* tables encode the grammar (FSA)
* grammar rules are compiled, we no longer interpret the grammar rules directly
* Parser =Table + Push-down Stack
* table entries contain instruction(s) that tell what to do at a given state
... possibly factoring in lookahead
» stack data structure deals with maintaining the history of computation and recursion

Tabular Parsing

* Shift-Reduce Parsing
* anexample is LR(0)
* lefttoright=LR

* (0) no lookahead (input word)
* Three possible machine actions

e Shift: read an input word

* j.e. advance currentinput word pointer to the next word

* Reduce: complete a nonterminal

* i.e.complete parsing a grammar rule

* Accept: complete the parse
* i.e.start symbol (e.g. S) derives the terminal string

Tabular Parsing

* LR(0) Parsing
* L(G)=LR(0)
* j.e.the language generated by grammar G is LR

if there is a unique instruction per state deterministic!

(or no instruction = error state)

LR(0) is a proper subset of context-free languages (C
* note

* human language tends to be ambiguous

* there are likely to be multiple or conflicting actions per state

* ifwe are using Prolog, we can let Prolog’s computation rule handle it
* via Prolog backtracking

LR(0)
languages

Tabular Parsing

* Dotted rule notation * state
* “dot” used to track the progress of a parse * asetof dotted rules encodes the state of the
through a phrase structure rule parse
. Examples: * setofdotted rules = name of the state
« vp ——> vbd np * kernel
means we’ve seen v and predict np *Vvp —=> vbd . np
« np —> . dt nn e Vvp —> vhbd .

means we’re predicting a dt (followed by nn) . completion (of predict NP)

©ovP == VP PP e np —> . dt nn
means we’ve completed a vp (with pp
modification) * np —= . nnp

e np —> . np cp

Tabular Parsing

compute all possible states through advancing the dot
* Example:

* (Assume dtis next in the input)
« vp —> vbd . np
e np ——> dt . nn
e nNnp ——> . nnp
s np —> . nNp Cp

Tabular Parsing

 Dotted rules

* Example:

State 0:
S ——> .np vp
np ——> .dt nn
np ——> .nnp
np ——> .np pp
possible actions

* shift dt and go to new state
* shift nnp and go to new state

* Creating new states

State 0

shift dt

shift nnp

State 1

State 2

Tabular Parsing

* State 1: Shift nn, goto State 3

State 3

shift nn

State 1
shift dt

State 2

Tabular Parsing

State 3

 Shift shift nn

State 1

* take input word, and shift dt

* putit on the stack

State 2

Input Stack

e state 3

(Powerpoint animation)

Tabular Parsing

e State 2: Reduce actionnp --> nnp..

State 3

State 1

shift dt

shift nnp
State 0

State 2

Tabular Parsing

e Reduce NP -> NNP .

* pop [ynpJOhN] off the stack, and
* replace with [\p [ynp JONN]] ON Stack [np [nop JOhn]]

|

Input

Tabular Parsing

e State 3: Reduce np --> dt nn.

State 3

shift nn

State 1

shift dt

State 2

Tabular Parsing

e Reduce NP -> DT NN .

* pop [yy Man] and [pr a] off the stack

* replace with [\plpr @llny Mani]
[nelpT @]lNw man]]

N

Input

 State 3 Stack

Tabular Parsing

e State 0: Transition NP

State 3

State 1

shift dt

np

State 2 State 4

Tabular Parsing

* for both states 2 and 3

* NP->NNP. (reduce NP -> NNP)
* NP->DTNN. (reduce NP -> DT NN)
» after Reduce NP operation
state 4
* notes:

e states are unique

* grammar is finite

e procedure generating states must terminate since the number of possible dotted rules is
finite

* no left recursion problem (bottom-up means input driven)

Tabular Parsing

* It's atable! (=FSA)

[state ~ JAcon Jeoto |
0 Shift DT

Shift NNP

Shift NN

Reduce NP --> NNP

Reduce NP --> DT NN

AR, OIN -~

AWM~

Tabular Parsing

e Observations

1. tableis sparse
e Example:
e State O, Input: [ygp -.]
e parse fails immediately
2. in agiven state, input may be irrelevant
e Example:
e State 2 (there is no shift operation)
3. there may be action conflicts
e Example:
e State 0: shift DT, shift NNP (only if word is ambiguous...)
* more interesting cases
¢ shift-reduce and reduce-reduce conflicts

Tabular Parsing

* finishing up
e an extra initial rule is usually added to the grammar
*3S --> S . S
e 3S =start symbol
* S =end of sentence marker
* input:
* milk is good for you $
e acceptaction
 discard $ from input
* return element at the top of stack as the parse tree

LR Parsing in Prolog

* Recap

* finite state machine technology + a stack
* each state represents a set of dotted rules

 Example:
S —> , np vp
e np ——> .dt nn
 Nnp ——> .nnp
 Nnp ——> .np pp

* we transition, i.e. move, from state to state by advancing the “dot” over the possible
terminal and nonterminal symbols

LR State Machine

State 13 State 5 State 8

ss>s$. np = np pp. S = np vp.

State 4 A~ > vp-pp
<o N PP
> s =2 np .vp pp = .Innp
State 1 np: nl:F))d.pp \ State 9
ss2>s.$ VP = vbdnp State 11 vp = Vp pp.
vp =2 vbd Ny .
vp = .vp pp PP~ in.np o pp = innp.

S pp > .in np np = .np pp no = np. pp

State 0 np = .nnp pp = .innp
ss> .s$

s =2 .npvp

np = .np pp

np = .nnp

np = .dtnn State 3

np = nnp. State 10
np = .np pp vp = vbd np.
np = .nnp np = np. pp
np = .dtnn pp > .innp

State 2 State 12

- dt. - dt nn. . .
- o P i [animation]

Build Actions

 two main actions
* Shift

* move a word from the input onto the stack

* Example:
* read a word with POS tag d
* np --> .dt nn

* Reduce
* build a new constituent

* Example:
* build a new NP
* np --> dt nn

Lookahead

« LR(1)
* a shift/reduce tabular parser

* using one (terminal) lookahead symbol
* (like the left corner idea)

* decide on whether to take a reduce action depending on
* state x next input symbol
* Example

* selectthe valid reduce operation consulting the next word
» cf. LR(0): select an action based on just the current state

Lookahead

* potential advantage
* the input symbol may partition the action space
* resulting in fewer conflicts
* provided the current input symbol can help to choose between possible actions

* potential disadvantages
1. larger finite state machine

* more possible dotted rule/lookahead combinations than just dotted rule
combinations

2. might not help much
* depends on the grammar
3. more complex (off-line) computation
* building the LR machine gets more complicated

Lookahead

* formally
* X —-=> oa.YB, L
* L =lookahead set
* L =set of possible terminals that can follow X
* a,B (possibly empty) strings of terminal/non-terminals

* Example:

» State 0
¢ SS——>.5 % [[]]
« S——>.np Vp [$]
« np——>.dt nn [in, vbd]
* np—-—>.nnp [in, vbd]

* np-—>.np pp [in, vbd]

Lookahead

* Centralldea
* for propagating lookahead in state machine
 if dotted rule is complete,
* lookahead informs parser about what the next terminal symbol should be

* Example:
e NP --> Dt NN. , L
* reduce by NP rule only if current input symbol is in lookahead set L

LR Parsing

 |[n fact

* LR-parsers are generally acknowledged to be the fastest parsers

» especially when combined with the chart technique (table: dynamic programming)
* reference

* (Tomita, 1985)
* textbook

* Earley’s algorithm

* uses chart

* but follows the dotted-rule configurations dynamically at parse-time

* instead of ahead of time (so slower than LR)

