LING/C SC 581:

Advanced Computational Linguistics

Lecture 12

Today's Topics

* Homework 5 Review

* CKY Parsing algorithm
* Dynamic Programming
* Chomsky Normal Form (CNF)

Homework 5 Review

 Contrast 1 vs 2:
1. John knew an untrue story about him.
2. John overheard an untrue story about him.

* Asking ChatGPT the right question is key:
* Who is him?
* Who does him refer to?
* Who is the story about?
* Responses may vary

* So how can we conclude anything about ChatGPT in these cases?

Reflexives and Pronouns

* (Reuland 2010; 93)

* Max knows which pictures of himself Lucie likes
* Max knows which pictures of herself Lucie likes

* What do you think of these?

* Max knows which pictures of him/ him Lucie likes
* Max knows which pictures of ??her/ her Lucie likes

e Orthese?
* Max knows *him/ him
e Max knows himself

The Pronoun it

* How about pronominal jt?
1. The Al knows which pictures of it the robot likes
2. The Al knows which pictures of it the robot likes
3. The Al knows which pictures of it the robot likes

Homework 5 Review

ChatGPT 3.5 ~

© You

John knew an untrue story about him. Who is the story about?

ChatGPT

The statement "John knew an untrue story about him" suggests that John is aware of
a false story circulating about himself. Therefore, the story is about John himself.
However, without further context, it's unclear what the specific untrue story might be
or what it entails.

09O @

Homework 5 Review

ChatGPT 3.5 ~

€ You

John knew an untrue story about him. Who is him?

ChatGPT

Without more context, it's impossible to determine who "him" refers to. The name "John" is
mentioned, but it's unclear who "him" is in relation to John. Can you provide more information or
clarify the context of the story?

0O ¢

Homework 5 Review

ChatGPT 3.5 v

© You

John knew an untrue story about him. Who does him refer to?

ChatGPT

Inthe phrase "John knew an untrue story about him," the word "him" likely refers to someone other
than John. It suggests that there is a story circulating about a person other than John, and John is
aware of this false narrative. Without further context, it's difficult to determine exactly who "him"
refers to. It could be a friend, acquaintance, or someone else entirely.

0O

Homework 5 Review

ChatGPT 3.5 ~

@ You

Bill is an honest man. John knew an untrue story about him. Who is the story about?

ChatGPT

The story is about Bill. John knew an untrue story about Bill.
0O @&

Homework 5 Review

ChatGPT 3.5 v

@ You

Bill is an honest man. John knew an untrue story about himself. Who is the story about?

ChatGPT
The story is about John. John knew an untrue story about himself, indicating that the story is about
him.

0O Y

Homework 5 Review

ChatGPT 3.5 ~

© You

John overheard an untrue story about him. Who is the story about?

ChatGPT
The story is about John, as indicated in the prompt. John overheard an untrue story
about himself. Therefore, the subject of the story is John.

0O ¢

Homework 5 Review

ChatGPT 3.5 v

€ You

Bill is an honest man. John overheard an untrue story about him. Who is the story about?

ChatGPT

The story is about Bill. John overheard an untrue story about Bill, the honest man.
09O @

Homework 5 Review

ChatGPT 3.5 ~

Q You

Bill is an honest man. John overheard an untrue story about himself. Who is the story about?

ChatGPT

The story is about John. John overheard an untrue story about himself, indicating that the story is
about him.

09O ¢

The Pronoun it

@ You

The Al knows which pictures of it the robot likes. What does it refer to here?

ChatGPT

The phrase "the Al knows which pictures of it the robot likes" seems to refer to a scenario where an
artificial intelligence system (Al) is able to recognize or determine which images of itself a robot
prefers or finds appealing. In this context, "the Al" likely denotes a sophisticated computational
system capable of processing and understanding visual information, while "the robot" refers to a
physical or virtual machine that interacts with its environment, possibly equipped with sensors
and other technologies for perceiving and interpreting images. The statement suggests a level of
self-awareness or preference recognition within the Al, implying it can discern the preferences or
aesthetic judgments of the robot regarding images of itself.

09

The Pronoun it

©

You
The Al knows which pictures of it the robot likes. What is in the pictures?

ChatGPT

As an Al language model, | don't have personal experiences or preferences, so | don't have the
capability to like or dislike pictures. However, if you're referring to a hypothetical scenario where
an Al is programmed to recognize certain images or patterns that it finds appealing, it would
depend entirely on how the Al was designed and what criteria were used to determine what it
likes. This could include various visual features, colors, shapes, or even more abstract concepts
depending on the programming and training data.

0O ¢

Context-Free Grammar Parsing

* Algorithm:
* use Prolog's top-down, left-to-right depth-first search
* (avoid left recursion problems: use our grammar transformation)

* There are lots of algorithms for parsing context-free rules
* |nthis course, we'll examine two
* Today: CKY - because of the 2D table (it's used for tabular parsing)
* the 2D table is computationally efficient (memorization of partial results)
* particularly useful when there is structural ambiguity
* e.g. ... with a telescope

Memorization aka Dynamic Programming

e A general Computational trick Fibonacci Spiral: adapted from wikipedia
(also used in math)

 Example:
* 0,1,1,2,3,5,8,13,21,34,55,89,...
* Fibonacci sequence

- f(0)=0,
. f(1)=1, 21x21

13x13

* f(n)=f(n-1)+f(n-2) for n>1 Y

* Example: fox 8x8
* f(5) =1(4) +(3) San

. =1(3) +(2) + f(3)

. =2 +1 +2

1x1

Memorization aka Dynamic Programming

* Not a standard feature of Prolog
* Program: fibonacci.prolog implements

* Fibonacci sequence
. f(0)=0,
. f(1)=1,
e f(n)=f(n-1)+f(n-2) for n>1
* (no{...} needed here, it's not a grammar)

1%% f(N, M) M is Fibonacci M

2f(0, 0).

3f(1, 1).

4FCN, M) := N> 1, N1 is N-1, f(N1,M1), N2 is N-2, f(NZ,M2), M is M1+M2.

Memorization aka Dynamic Programming

e Correct but
inefficient

?7— [fibonaccil.

true.

?— (0, N).

N =0 ;
false.

?_ f(lp N)-

N=1;

false.

?— (5, N).

N=5;
false.

?— f(6, N).

N =8 ;
false.

?_ f(7; N)-

N =13

?7— (8, N).
N =21 ;
false.

Memorization aka Dynamic Programming

?7- spy(f). type 1 Call: (13) f(1, _46172) ? leap N=5;
% Spy point on f/2 for 1eap Exit: (13) (1, 1) ? leap Fail: (12) f(1, _57846) ? leap
true. Call: (13) f(@, _47966) ? leap Fail: (13) f(@, _55154) ? leap
ldebug] 7- £(5, N). Exit: (13) f(@, @) ? leap Fail: (13) f(1, _53360) ? leap
Call: (10) (5, _34086) ? leap Exit: (12) f(2, 1) ? leap Fail: (12) f(2, _52458) ? leap
Call: (11) f(4, _35386) ? leap Exit: (11) f(4, 3) ? leap Fail: (11) f(3, _51556) ? leap
call: (12) (3, _36288) ? 1eap Call: (11) f(3, _51556) ? leap Fail: (13) f(@, _47966) ? leap
- Call: (12) f(2, _52458) ? leap Fail: (13) f(1, _46172) ? leap

Call: (13) f(2, _37190) ? leap call: (13) f(1, 53360) ? 1
Call: (14) (1, _38092) ? leap . (13) f(1 1 - Computes f(2) = 1 three times!

. Exit: 1) ? leap
Exit: (14)7(1,71) 7 leap call: (13) f(0, _55154) 7 1 Fail: (14) f(0, _39886) 7 1
all: , ? lea ail: , ? lea
call: (14) f(0, _39886) ? leap _ - P _ P
. Exit: (13) f(@, @) ? leap Fail: (14) f(1, _38092) ? leap
Exit: (14) f(0, @) ? leap .)
_ Exit: (12) f(2, 1) ? leap Fail: (13) f(2, _37190) ? leap
Exit: (13) (2, 1) ? leap .
Call: (12) f(1, _57846) ? leap Fail: (12) f(3, _36288) ? leap
Call: (13) f(1, _42578) ? leap . .
. Exit: (12) f(1, 1) ? leap Fail: (11) f(4, _35386) ? leap
Exit: (13) (1, 1) ? leap .]
) Exit: (11) f(3, 2) ? leap Fail: (10) f(5, _34086) ? leap
Exit: (12) f(3, 2) ? leap .
Exit: (10) f(5, 5) ? leap false.

Call: (12) f(2, _45270) ? leap

CKY Algorithm

CKY = Cocke-Kasami-Younger, sometimes CYK

* Atabular method (dynamic programming) for parsing Context-Free Grammars
(CFG) (JM textbook, 13.4)
. \‘Il\éoglfs with CFGs expressed in Chomsky Normal Form (CNF) format (JM textbook,

l. X -y, z.
2. x —> [w].
3. s ——> []. (s startsymbol) (optional rule, not for non-start symbols)
* Note 1:
* all CFGs can be expressed in this format, although it destroys linguistic structure (which can be rebuilt).
* Note 2:
« cf.regulargrammars:rule 1vs. X —> [w], y.or x —> vy, [w].
* Note 3:

* other normal forms are also possible:
* e.g. Greibach Normal Form (GNF): x —> [a], y..z
* non-left recursive!

Chomsky Normal Form (CNF)

 Conversion steps:

1.

new start symbol Sg ——> S.
(s original start symbol) to cope with possible empty derivation.
Sp is the only nonterminal allowed to have form Sg ==> S
Make new nonterminal for terminals on the RHS:
X ——> .. [w] ... (JRHS|>1)
becomes X ——> ... X, ... andX, ——> [w]. (X, a new nonterminal)
Binarize the RHS:
X ==> Y1, ..,¥n. (IRHS|>2)
becomes a cascading sequence of binary rules:
X ==> Y1, X1. X3 ==> ¥2, X2. ... Xp-1 ==> Yn-1, Yn-
Delete epsilon rules:
foreachinstanceofx ——> []. andy —-—> ... X ...
add a copy without X,i.e. 'y ==>... ... thendeletex ——> [].
Remove singleton rules:
remove X —=> Y. (exception: X cannot be Sp) Replace X by y in other rules.

Chomsky Normal Form (CNF)

* Example:
l.s —>
2.5 —>
3.a —>
4. a ——>
5.b —>
6. C —>

[1.

a.

a, b, b, a.
[a].

[b]l, c,
[c].

[b].

6.

AR SR A

(]

[a]

[a, b, ¢, b, b, c, b, 4]

[a, b, ¢, b, b, ¢, b, a, b, ¢, b, b, ¢, b, 7]

[a, b, c, b, b, c, b, a, b, ¢, b, b, ¢, b, a, b, ¢, b,
b, c, b, a]

* Let's convert this grammar to CNF.

Chomsky Normal Form (CNF)

* Example:
1. s —>
2. S —>
3. a —>
4. a —>
5. b —>
6. ¢ —>

[1.

a.

a, b, b, a.
[a].

[bl, c, [b]
[c].

1. s@0 —> s,

2. s —> [].

3. S —> a.

4. a ——> a, bba.
5. bba —— b, ba.
6. ba —-— b, a.
7. a —> [a].

8. b ——> b2, cb.
9. b2 -—> [b].

10. cb ——> ¢, b2.
11. ¢ —— [c].

1. s0 —— [].

2. SO0 ——> a.

3. a —> a, bba.
4. bba ——> b, ba.
5. ba —— b, a.
6. a —> [al.

7. b —> b2, cb.
8. b2 ——> [b].

9. cb -—> ¢, b2.
10. ¢ —> [c].

CKY Algorithm

* Grammar transformed into:
l. X ——> vy, z.
2. x —> [w].
* Given a sentence wy,..,w,, represent the possible parsings of this string

by a table, where each cell may hold a nonterminal covering a
substring.

 Example: °w,; "w, 2 w3 3(0..3 are position markers)

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

CKY Algorithm

* Chomsky Normal Form (CNF) — binary branching

e 2D table

[1,2] X%F

-—> Yy, X3.
--> x1, z.
Y, Z.
--> x1, x2.
——> X2, X3.
x1l ——> [wl].
x2 ——> [w2].
x3 ——> [w3].

N<< O n n
I
|
\%

CKY Algorithm

* Bottom-up:

[0,1] x1 |[0,2] [0,3]

[1,2] x2 |[1,3]

[2,3] x3

x1 ——> [wl].
x2 ——> [w2].
x3 ——> [w3].

CKY Algorithm

* Bottom-up: Ow,; 1w,2w;3

[0,1] x1 [[0,2]y [0,3]

[1,2] x2 |[1,3]Z

[2,3] x3

y —> x1, x2.
zZ ——> X2, X3.

CKY Algorithm

* Bottom-up:

[0,11 x1|[0,2]y [0,3] S is not derivable because

[0,2]y overlapswith [1,3]z

[1,2] x2 |[1,3]Z

[2,3] x3

CKY Algorithm

* Bottom-up:

[0,11 x1|[0,2]y |[0,3]s [0,3]s is derivable because

[0,1]1x1 concatswith [1,3]z

[1,2] x2 |[1,3]Z

[2,3] x3

CKY Algorithm

* Bottom-up:

[0,11 x1|[0,2]y |[0,3]s [0,3]s is derivable because

[0,2]y concatswith [2,3]x3

[1,2] x2 |[1,3]Z

[2,3] x3

CKY Algorithm

* Backpointers indicate parse:

[0,11 x1|[0,2]y 0,3]s

[1,2] x2 |[1,3]

CKY Algorithm

440 Chapter 13. Syntactic Parsing

function CKY-PARSE(words, grammar) returns table

for j < from | to LENGTH(words) do
tablelj—1,j]«{A|A — words(j| € grammar}
for i < from j — 2 downto O do
fork«i+1toj—1do
tableli j] < tablelij] U
{A|A — BC € grammar,
B € tableli,k],
C € tablelk,j|}

The CKY algorithm.

CKY Algorithm and Prolog Grammar Rules

e CNF:

* we can make conversion transparent
* because we can decide what to produce as a parse tree using an extra

argument, cf. left recursive parse transformation
* Table representation:
* (if using Prolog) must be careful about variable bindings:
* solution: make fresh copies of variables

* Agreement (feature propagation):
* must save all arguments into table

* and relink up properly, e.g.
« np(np(DT,NN)) ——> dt(DT,Num), nn(NN,Num).

nltk book: chapter 8

1s=>yx3

* Link: 25 => Z(l z
* https://www.nltk.org/book/ch08.html 1s->y2

* Steps: 4y ->x1x2
$ python 52Z->X2x3
Python 3.9.12 (main, Jun 1 2022, 06:34:44) 5 x1 ->'wl'
>>> import nltk 7 X2 ->'w2'
>>> cnf = open('cnf.txt'). read() g x3 -> 'w3'

>>> cnf
"'s —> y x3\ns —> x1 z\ns —>y z\ny —> x1 x2\nz —> x2 x3\nx1 —> 'wl'\nx2 —> 'w2'\nx3 —>

'w3'\n . '
>>> cfg = nltk.CFG.fromstring(cnf)

cfgis a grammar
>>> cfg

<Grammar with 8 productions>
>>> p = nltk.ChartParser(cfg)

https://www.nltk.org/book/ch08.html

nltk book: chapter 8

* To parse, supply a pre-tokenized sentence (a list):

« >>> for tree in p.parse(['wl','w2','w3']):

e >>>

tree.draw()

<TAB> to indent, and
need a blank line as well

NLTK

= x
>.,.
>..

53—

NLTK

nltk book: chapter 8

* To perform parsing, call:
- p.parse(list) p is a parser

* But, first define p, the parser you want to use.

* Different parsing strategies available, e.g.:
1. p = nltk.ChartParser(cfg)

2. p
3. p

nltk.ShiftReduceParser(cfqg) doesn't do backtracking
nltk.RecursiveDescentParser(cfg) doesn't do left recursion

nltk book: chapter 8

* Same sentence, different parser:

« >>> p = nltk.RecursiveDescentParser(cfg)

« >>> for tree in p.parse(['wl','w2','w3']):
* i tree.draw()

o >>> O O NLTK O @]
S S

/\ /\

y x3 x1 z
/N | AN
x1 x2 w3 wi x|2 xr

|

w2 w3

NLTK

nltk book: chapter 8

* Same sentence, different parser:

« >>> p = nltk.ShiftReduceParser(cfg)
« >>> for tree in p.parse(['wl','w2','w3']):
* i tree.draw()

O O NLTK

e >>> /\

nltk book: chapter 8

* Notes on grammar format:
* plain text file
1stline defines the start-symbol (S)
-> is the rewrite symbol (cf. Prolog —->)
space between symbols (cf. Prolog ,)
lexical items are quoted, e.g. 'l' (cf. Prolog [word])

* you cannot combine grammatical categories with lexical items
« PP->'of' NP (disallowed, cf. pp ——> [of], np.)

e you are not permitted multi-word lexical items
* not ok: NP -> 'New York'
e ok: NP -> 'New_ York"' (cf. Prolog [new,york)

