LING/C SC/PSYC 438/538

Lecture 6

Sandiway Fong

Today's Topics

* perlintro:
e equality, coercion, useful functions on strings
e file input/output (1/0)

* Homework 5 (due Sunday midnight)

Equality

| Equality |Numcric |String * Conditionals:

| Equal | = | ea if (comparison) { statement }

| NotEqual | t= [ne else { statement }

| Comparison | <=> | cmp elsif (comparison) { statement }

| Relational [Numeric |String » if (@ < 10) { print "Small array\n" } else {
[Lessthan [< [print "Big array\n"

| Greater than | > | gt * Note:

| Less than or equal | = ’ le * @a here is in scalar context = size of array

|Greater thanorequal | >- | se - unless (@ > 10) { print "@a\n" }

Note:
* if size of array a is £ 10, it prints the contents of array a

returns 1 for true and """ for false

e Boolean logic

1%, && and
2. || or
3. ! not

Perl equality (numeric and string)

* What does eq do?
« perl —e '$x = "windy" eq "Windy"; print "$x\n

« perl —e 'use feature fc; $x = "windy" eq fc("Windy"); print "$x\n"'
e 1

| Equality |Numeric |String

« perl —e '"$x = "windy" eq "windy"; print "$x\n

. 1 E— Bl | = | i
« perl —e "$x = 0.0 eq 1; print "$x\n"' implicit Not Equal | 1= |ne
| coercion Comparison | <=> | cmp
- perl —e '$x = 0.0 eq 0; print "$x\n"' | Relational |Numcric |String
-1 _ | Less than | < | 1t
« perl —e '$x = 0.0 eq "0"; print "$x\n | reaier s | 5 | =
. 1 'L 1 $ @ @ 1 1 d [1] 3 .t 1 $ \ 1 | uss man s cqual | iz | 18
. erL —e X = 09. e wln ’ rin X\Nn
P a y P |Grcatcr than or equal | >= | ge

Perl equality (numeric and string)

° What does == do? Equality Numeric |String
° per‘-l_ -e I$x = @.@ == 1; prlnt "$X\n"I Equal == eq

1 1 1 1l NOIEqual - e

. E-)er'[_ —-e $X = 0.0 == 0; prlnt $X\n Comparison <=> cmp

. perl —e '$x = 0.0 == "0"; print "$x\n""' Relational Numeric [String

e 1 Less than < 1t

- perl —e '$x = 0.0 == "windy"; print "$x\n"' Greater than : gt

e 1 Less than or equal <= le
Greater than or equal - ge

Perl equality (numeric and string)

* Turn on warnings:
$ perl —e 'use warnings; "windy" == 0'
Useless use of numeric eq (==) in void context at -e line 1.
Argument "windy" isn't numeric in numeric eq (==) at -e line 1.

* Data type testing:
« use Scalar::Util "looks_like_number";

$ perl —e 'use Scalar::Util "looks_like_number"; print
looks_like_number($ARGV[@]), "\n"' 1.23

1

$ perl —e 'use Scalar::Util "looks_like_number"; print
looks_like_number($ARGV[Q]), "\n"' windy

More Implicit Coercion

* Example:
* the following program
my @a = gw(one, two, three); Note: gw = quote word, cf.

(Ilonell’ IItWOII’ Ilthreell)

my $string = @a." is my number";
print "$string\n";
* prints
3 is my number

* Note: . (period) is the string concatenation operator (scalar context)

Implicit Coercion

$ python3

» perl —e ‘print "4" % 4, "\n >>> print('4"x4)

16 4444
>>>
-« perl —e 'print "4" x 4, "\n"' (“x” is the repetition operator)
4444
- perl —-e '@a = (4) x 4; print "@a\n"' (list context)
4444

@ = (4) x 4
(4, 4, 4, 4)

General Looping: while and for

e while

1% while (condition) {
3. }
There's also a negated version, for the same reason we have unless :

il until (condition) {

2.
3. }
o for .
Exactly like C: Python: use range(start, end, step) instead. Or Numpyarange()

) for ($i = 0; $i <= S$max; $i++) {
3. }

The C style for loop is rarely needed in Perl since Perl provides the more friendly list scanning foreach
loop.

General Looping: foreach

The foreach keyword is actually a synonym for the for keyword, so you can use either. If VAR is omitted, $_
is set to each value.

; for (@ary) { s/foo/bar/ } $_ Imp|IC|t Varlable
Cin for my $elem (@elements) {

4. $elem x= 2;

5. }

6.

7. for $count (reverse(1..10), "BOOM") {

8. print $count, "\n";

9. sleep(1);

10. }

11.

12. for (1..15) { print "Merry Christmas\n"; }

General Looping

« perl -e '"for (@ARGV) {print $_ x $_, " "}' 1 2 3 45
149 16 25

Perl list ranges

1. for (1 .. 1_000_000) { Python equivalent:
: # code - for i in range(1,1000001):
3. }

code

iterates setting $_ (the default variable)
from 1, 2, .., 1000000

1ing538-19% perl -le 'for (1..10) {print}' 1. @alphabet = ("A" .. "Z"):

1 ’

2

2 to get all normal letters of the English alphabet, or

5

? 1. $hexdigit = (0 .. 9, "a" .. "f")[$num & 15];
8

9

10 1ing538-19% perl -le 'Ca = (1..10); print "@a"'
1ing538-19% [123456789 10

1ing538-19% [

split

* https://perldoc.perl.org/functions/split.html

* Compare:
*@ = split " ", "this is a sentence."
*@ = split //, "this is a sentence."

* Exercise: what is the size of array @a”?

https://perldoc.perl.org/functions/split.html

Perl: useful string functions

Functions for SCALARs or strings ° Chomp (USEfUI W|th flle I/O) VS.

e chomp - remove a trailing record separator from a string
¢ chop - remove the last character from a string C h O p
e chr - get character this number represents

e crypt - one-way passwd-style encryption

* hex - convert a string to a hexadecimal number

* index - find a substring within a string

¢ |c - return lower-case version of a string

o |cfirst - return a string with just the next letter in lower case

¢ length - return the number of bytes in a string

e oct - convert a string to an octal number

¢ ord - find a character's numeric representation @a

. m un :
split , $line;
e pack - convert a list into a binary representation

+ Q/STRING/ - singly quote a string Note: multiple spaces ok with " " variant
e gg/STRING/ - doubly quote a string

* reverse - flip a string or a list

e rindex - right-to-left substring search

» sprintf - formatted print into a string

e substr - get or alter a portion of a stirng

e tr/// - transliterate a string

e uc - return upper-case version of a string

o ucfirst - return a string with just the next letter in upper case
e y/// - transliterate a string

Perl: useful string functions

Transliterate:

 destructive operation!
« tr/matchingcharacters/replacementcharacters/modifiers
* modifiers are optional:

1. c Complement the SEARCHLIST.

2. d Delete found but unreplaced characters.

3. 8 Squash duplicate replaced characters.

4. T Return the modified string and leave the original string
5. untouched.

1%$s = "A Big Cat"; 1%$s = "39,250,017";
2%$s =~ tr/ABC/abc/; 2%s =~ tr/,//d;
3print "$s\n"; 3print "$s\n";

Perl: useful string functions

* Perl doesn't have a built-in trim-whitespace-from-both-ends-of-a-

string function.

e Can be mimicked using regex (more later)

1%$s = " This is a sentence. ";

2%s =~ s/A\s+I\s+%$//9;
3print "<$s>\n";

Python:

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument
is a string specifying the set of characters to be removed. If omitted or None, the chars argument
defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combina-
tions of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.')
'example’

The outermost leading and trailing chars argument values are stripped from the string. Characters
are removed from the leading end until reaching a string character that is not contained in the set
of characters in chars. A similar action takes place on the trailing end. For example:

Terminal: newline ("\n") is
of length 1 in Perl. LETTER E WITH

ACUTE

N

CJK UNIFIED IDEOGRAPH-4F8D

Unicode U+00E9 Unicode U+4F8D
UTF-8 C3 A9 UTF-8 E4 BE 8D

perl -le

A note on
perl -le

string length

perl -le
perl -le

perl -le

'$1 =
'$1 =
'$1
'$1
'$1
'$1

"été"; print length($1l)'’
"\n"; print length($1)'
"1'\''été"; print length($1l)'
" "; print length($1)’
"1'\''été"; print length($1l)'

"samurai"; print length($1)'

Python: a note on string length

[~$ python3 -c 'print(len("&"))'

1k

[~$ python3 -c 'print(len("été"))'

3

[~$ python3 -c 'print(len("'1l\''été"))’

5
~$ I

(~$ perl -le 'use utf8; $1 = "été"; print length($1l)'’
3
[~$ perl -le 'use utf8; $1 = " "; print length($1)’

1
~$ I

Python: bytes vs. characters

* (len) number of characters vs. number of bytes

[~$ python3 —-c 'print(len("f& "))’ Il'$ python3 —c 'print(len("a".encode("utf-8")))"

U 1
[~$ python3 —c 'print(len("été")) $ python3 -c 'print(len("ba".encode("utf-8")))"
3 2

[~$ pyth0n3 -C 'print(len("'l\' lé'té")) : $ pythons —-C |print(1en(ll{§ ".enCOdE("Utf—Su))) '
2 3

~$ | $ python3 —-c 'print(len("é".encode("utf-8")))'
2

\
e

Python: size of object

sys.getsizeof(object|, default])
Return the size of an object in bytes. The object can be any type of object. All built-in objects will
return correct results, but this does not have to hold true for third-party extensions as it is imple-
mentation specific.

$ python3 -c 'import sys;print(sys.getsizeof("fF"))"

76 * Python: inefficient in data storage

$ python3 —-c 'import sys;print(sys.getsizeof("a"))' e overhead

50

$ python3 -c 'import sys;print(sys.getsizeof("ab"))'

51 C Integer Python Integer
thon3 -c 'import sys;print(sys.getsizeof("affF "))

3893' P ysiprint(sys.g ("afs ")) 1 PyObject_HEAD

digit | 1

Python: strings

ling388-18 — Python — 80x24

5

>>> len(s[@])

1

>>> s = !

>>> len(s)

0

>>> s ="' !

>>> len(s)

1

>>> s = 'H!

>>> len(s)

1

>>> sl 'white'
>>> s2 = 'board’
>>> sl + s2
'whiteboard'

>>> s1 + '-' + s2
'white-board'
>>> s2 + sl

'boardwhite’
>>> s = sl + '-' + s2
>>> s

'white-board'
>>> [

* Many methods that work on lists
also work on strings

str.capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

str.casefold()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case
distinctions in a string. For example, the German lowercase letter '8' is equivalent to "ss". Since
it is already lowercase, lower () would do nothing to '8'; casefold() converts it to "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str. center(width|, fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is
an ASCII space). The original string is returned if width is less than or equal to len(s).

str. count (subl, start], end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Op-
tional arguments start and end are interpreted as in slice notation.

str. endswith(suffix[, start], end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be

a tuple of suffixes to look for. With optional start, test beginning at that position. With optional
end, stop comparing at that position.

Perl: file I/O

 Step 1: call open()
Files and I/O

You can open a file for input or output using the open () function. It's documented in extravagant detail in perlfunc
and perlopentut, but in short:

g open(my $in, "<", "input.txt") or die "Can't open input.txt: $!";
2o open(my $out, ">", ‘"output.txt") or die "Can't open output.txt: $!";

"Can't open my.log: $!";

[+
[N
(]

3. open(my $log, ">>", "my.log") or

Files: must be opened for reading “<“ or writing “>”
(overwrite or append mode “>>”
Shell syntax: 1/O redirection “<“ “>
Opening a file creates a file handle (Perl variable)
— not to be confused with filename

Supply the file handle for read/write

”

Perl: file I/O

 Step 2: use the <> operator:

You can read from an open filehandle using the <> operator. In scalar context it reads a single line from the
filehandle, and in list context it reads the whole file in, assigning each line to an element of the list:

1o my $line <$in>;

<$in>;

2 my @lines

Reading in the whole file at one time is called slurping. It can be useful but it may be a memory hog. Most text file
processing can be done a line at a time with Perl's looping constructs.

Sin is the file handle instantiated by the open() call

Perl: file I/O

The <> operator is most often seen in a while loop:

* Line by line:

1. while (<$in>) { # assigns each line in turn to $_
2. print "Just read in this line: $_";
So }

open($txtfile, $ARGV[O]) or die "File $ARGV[@] not found!\n";
while ($line = <$txtfile>) {
print "$line";
}
close($txtfile)

Notes:

1. the command Sline = <S$txtfile> inside the condition reads in a line from the file referenced by the file handle Stxtfile
2. and places that line into the variable Sline (including the newline at the end of the line)

3. Atthe end of the file, Sline is just an empty string (equivalent to false).

4 the filename is the first argument to the Perl program (arguments go in @ARGV).

Perl: file I/O

o0 B falconheavylaunch.txt v

Elon Musk's Falcon Heavy rocket launches successfully
By Jonathan Amos BBC Science Correspondent

US entrepreneur Elon Musk has launched his new rocket, the Falcon Heavy, from the Kennedy
Space Center in Florida.

The mammoth vehicle - the most powerful since the shuttle system - lifted clear of its pad
without incident to soar high over the Atlantic Ocean.

It was billed as a risky test flight in advance of the lift-off.

The SpaceX CEO said the challenges of developing the new rocket meant the chances of a
successful first outing might be only 50-50.

"I had this image of just a giant explosion on the pad, a wheel bouncing down the road.
But fortunately that's not what happened," he told reporters after the event.

With this debut, the Falcon Heavy becomes the most capable launch vehicle available.

It is designed to deliver a maximum payload to low-Earth orbit of 64 tonnes - the
equivalent of putting five London double-decker buses in space.

Such performance is slightly more than double that of the world's next most powerful
rocket, the Delta IV Heavy - but at one third of the cost, says Mr Musk.

For this experimental and uncertain mission, however, he decided on a much smaller and
whimsical payload - his old cherry-red Tesla sports car.

A space-suited mannequin was strapped in the driver's seat, and the radio set to play a
David Bowie soundtrack on a loop.

Perl: file 1/0O

What does this code do?

perl —e 'open $f, "falconheavylaunch.txt";
while (<$f>) {print((split "™ ")[@],"\n")}'

perl —e 'open $f, "falconheavylaunch.txt";
while (<$f>) {print((split "
")[0],"\n")}" | wc -1

reports 49 lines

. falconheavylaunch.txt ~

A Heavy rocket launches successfully
BBC Science Correspondent

Elon Musk has launched his new rocket, the Falcon Hea
ehicle - the most powerful since the shuttle system - li
dent to soar high over the Atlantic Ocean.

bd as a risky test flight in advance of the lift-off.

CEO said the challenges of developing the new rocket meant
first outing might be only 50-50.

s image of just a giant explosion on the pad, a wheel bound
ately that's not what happened," he told reporters after th|

debut, the Falcon Heavy becomes the most capable launch veh

gned to deliver a maximum payload to low-Earth orbit of 64
of putting five London double-decker buses in space.

mance is slightly more than double that of the world's ne
Delta IV Heavy - but at one third of the cost, says Mr My

perimental and uncertain mission, however, he decided on 3
load - his old cherry-red Tesla sports car.

mannequin was strapped in the driver's seat, and the
\ dtrack on a loop.

Perl: file I/O

* A bit more:
- perl —e 'open $f, "falconheavylaunch.txt"; while
(<$f>) {@words = split " "; $sum+=@words}; print
$sum’

 Compare with:

wc falconheavylaunch.txt
49 669 3973 falconheavylaunch. txt

Homework 5

* There are 4 files on the course website:
« 2letters. txt words with 2 letters
« 3letters. txt etc.
« 4letters. txt
« S5letters. txt

DURN DURO DURR DUSH DUSK DUST DUTY DWAM DYAD DYED DYER DYES DYKE DYNE DZHO DZOS EACH EALE EANS
EARD EARL EARN EARS EASE EAST EASY EATH EATS EAUS EAUX EAVE EBBS EBON ECAD ECCE ECCO ECHE ECHO ECHT
ECOD ECOS ECRU ECUS EDDO EDDY EDGE EDGY EDHS EDIT EECH EEEW EELS EELY EERY EEVN EFFS EFTS ECAD EGAL EGER
ECGCS EGGY ECIS EGMA EGOS EHED EIDE EIKS EILD EINA EINE EISH EKED EKES EKKA ELAN ELDS ELFS ELHI ELKS ELLS ELMS
ELMY ELSE ELTS EMES EMEU EMIC EMIR EMIT EMMA EMMY EMOS EMPT EMUS EMYD EMYS ENDS ENES ENEW ENGS ENOL

A particular set of Scrabble Words

(# Ietters > 2) —e—Number of words —e—combinations

100000000
10000000
1000000
100000
10000

1000

Number of words

100
10
1

1 2 3 4
Number of letters

Homework 5

* Question 1:

» write a Perl one-liner or a Perl program that reads in one of the nletter. txt
files and prints out the number of words.

* HINT for new programmers: use $ARGV [0]. use split. Store the words in an
array. Print the size of the array.

* Show your program working on each nletter.txt forn=2, 3,4 and5 at the
terminal, e.g. screenshot.

 What numbers did you getforn=2, 3,4 and 5?

Homework 5

* Question 2:

* Which words in the nletter. txt files spell the same forwards as
backwards?

* Examples: YAY, WOW, DEED, NAAN

write a Perl one-liner or a Perl program that reads in one of the
nletter.txt files and prints out the words that satisfy this condition.

Show your program working on each nletter.txt forn=2,3,4and5
at the terminal, e.g. screenshot.

Report how many words you got forn=2, 3,4 and 5?

HINT for new programmers: use foreach to loop over your array (for
each word), use reverse and eq to test.

Homework 5

* |nstructions:
* Put all your answers, screenshots in one PDF document
e (not Word .docx or .doc)
* email to me (sandiway@arizona.edu)
* subject line: 438/538 Homework 5 YOUR NAME
* Due date: by midnight Sunday

32

mailto:sandiway@email.arizona.edu

