
LING/C SC/PSYC 438/538
Lecture 6

Sandiway Fong

Today's Topics

•perlintro:
• equality, coercion, useful functions on strings
• file input/output (I/O)

•Homework 5 (due Sunday midnight)

Equality

• Conditionals:
if (comparison) { statement }

else { statement }
elsif (comparison) { statement }

• if (@a < 10) { print "Small array\n" } else {
print "Big array\n" }

• Note:
• @a here is in scalar context = size of array

• unless (@a > 10) { print "@a\n" }
• Note:

• if size of array a is ≤ 10, it prints the contents of array a
returns 1 for true and "" for false

Perl equality (numeric and string)

• What does eq do?
• perl -e '$x = "windy" eq "Windy"; print "$x\n"'

• perl -e 'use feature fc; $x = "windy" eq fc("Windy"); print "$x\n"'
• 1
• perl -e '$x = "windy" eq "windy"; print "$x\n"'
• 1
• perl -e '$x = 0.0 eq 1; print "$x\n"'

• perl -e '$x = 0.0 eq 0; print "$x\n"'
• 1
• perl -e '$x = 0.0 eq "0"; print "$x\n"'
• 1
• perl -e '$x = 0.0 eq "windy"; print "$x\n"'

implicit
coercion

Perl equality (numeric and string)

•What does == do?
• perl -e '$x = 0.0 == 1; print "$x\n"'

• perl -e '$x = 0.0 == 0; print "$x\n"'
• 1
• perl -e '$x = 0.0 == "0"; print "$x\n"'
• 1
• perl -e '$x = 0.0 == "windy"; print "$x\n"'
• 1

Perl equality (numeric and string)

• Turn on warnings:
$ perl -e 'use warnings; "windy" == 0'
Useless use of numeric eq (==) in void context at -e line 1.
Argument "windy" isn't numeric in numeric eq (==) at -e line 1.

• Data type testing:
• use Scalar::Util "looks_like_number";

$ perl -e 'use Scalar::Util "looks_like_number"; print
looks_like_number($ARGV[0]), "\n"' 1.23
1
$ perl -e 'use Scalar::Util "looks_like_number"; print
looks_like_number($ARGV[0]), "\n"' windy

$

More Implicit Coercion

• Example:
• the following program

my @a = qw(one, two, three);
my $string = @a." is my number";
print "$string\n";
• prints
 3 is my number
• Note: . (period) is the string concatenation operator (scalar context)

Note: qw = quote word, cf.
("one", "two", "three")

Implicit Coercion

• perl -e 'print "4" * 4, "\n"'
16

• perl -e 'print "4" x 4, "\n"' (“x” is the repetition operator)
4444

• perl -e '@a = (4) x 4; print "@a\n"' (list context)
4 4 4 4

• @a = (4) x 4
(4, 4, 4, 4)

$ python3
>>> print("4"*4)
4444
>>>

General Looping: while and for

Python: use range(start, end, step) instead. Or Numpy arange()

General Looping: foreach

$_ implicit variable

General Looping

• perl -e 'for (@ARGV) {print $_ * $_, " "}' 1 2 3 4 5
1 4 9 16 25

Perl list ranges

Python equivalent:
• for i in range(1,1000001):

code
iterates setting $_ (the default variable)
from 1, 2, .., 1000000

split

• https://perldoc.perl.org/functions/split.html
• Compare:

• @a = split " ", "this is a sentence."
• @a = split //, "this is a sentence."

• Exercise: what is the size of array @a?

https://perldoc.perl.org/functions/split.html

Perl: useful string functions

• chomp (useful with file I/O) vs.
chop

Note: multiple spaces ok with " " variant

Perl: useful string functions

Transliterate:
• destructive operation!
• tr/matchingcharacters/replacementcharacters/modifiers
• modifiers are optional:

Perl: useful string functions

• Perl doesn't have a built-in trim-whitespace-from-both-ends-of-a-
string function.
• Can be mimicked using regex (more later)

Python:

A note on
string length

Terminal: newline ("\n") is
of length 1 in Perl.

Python: a note on string length

Python: bytes vs. characters

• (len) number of characters vs. number of bytes

Python: size of object

• Python: inefficient in data storage
• overhead

Python: strings
• Many methods that work on lists

also work on strings

Perl: file I/O

• Step 1: call open()

Files: must be opened for reading “<“ or writing “>”
(overwrite or append mode “>>”)
Shell syntax: I/O redirection “<“ “>”
Opening a file creates a file handle (Perl variable)
– not to be confused with filename
Supply the file handle for read/write

Perl: file I/O

• Step 2: use the <> operator:

$in is the file handle instantiated by the open() call

Perl: file I/O

• Line by line:

open($txtfile, $ARGV[0]) or die "File $ARGV[0] not found!\n";
while ($line = <$txtfile>) {
 print "$line";
}
close($txtfile)

Notes:
1. the command $line = <$txtfile> inside the condition reads in a line from the file referenced by the file handle $txtfile
2. and places that line into the variable $line (including the newline at the end of the line)
3. At the end of the file, $line is just an empty string (equivalent to false).
4. the filename is the first argument to the Perl program (arguments go in @ARGV).

Perl: file I/O

Perl: file I/O
• What does this code do?
• perl -e 'open $f, "falconheavylaunch.txt";
while (<$f>) {print((split " ")[0],"\n")}'

• perl -e 'open $f, "falconheavylaunch.txt";
while (<$f>) {print((split "
")[0],"\n")}' | wc -l

• reports 49 lines

Perl: file I/O

• A bit more:
• perl -e 'open $f, "falconheavylaunch.txt"; while
(<$f>) {@words = split " "; $sum+=@words}; print
$sum'

• Compare with:
wc falconheavylaunch.txt
 49 669 3973 falconheavylaunch.txt

Homework 5

• There are 4 files on the course website:
• 2letters.txt words with 2 letters
• 3letters.txt etc.
• 4letters.txt
• 5letters.txt

A particular set of Scrabble Words

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 3 4 5

N
um

be
r o

f w
or

ds

Number of letters

Number of words combinations(# letters ≥ 2)

Homework 5

• Question 1:
• write a Perl one-liner or a Perl program that reads in one of the nletter.txt

files and prints out the number of words.
• HINT for new programmers: use $ARGV[0]. use split. Store the words in an

array. Print the size of the array.
• Show your program working on each nletter.txt for n = 2, 3, 4 and 5 at the

terminal, e.g. screenshot.
• What numbers did you get for n = 2, 3, 4 and 5?

Homework 5

• Question 2:
• Which words in the nletter.txt files spell the same forwards as

backwards?
• Examples: YAY, WOW, DEED, NAAN
• write a Perl one-liner or a Perl program that reads in one of the
nletter.txt files and prints out the words that satisfy this condition.
• Show your program working on each nletter.txt for n = 2, 3, 4 and 5

at the terminal, e.g. screenshot.
• Report how many words you got for n = 2, 3, 4 and 5?
• HINT for new programmers: use foreach to loop over your array (for

each word), use reverse and eq to test.

Homework 5

• Instructions:
• Put all your answers, screenshots in one PDF document
• (not Word .docx or .doc)

• email to me (sandiway@arizona.edu)
• subject line: 438/538 Homework 5 YOUR NAME
• Due date: by midnight Sunday

32

mailto:sandiway@email.arizona.edu

