
LING/C SC/PSYC 438/538
Lecture 5

Sandiway Fong

Today's Topics

•Homework 4 Review
•A bit more on quoting
•perlintro: scalars and arrays
•Next time: Homework 5

Homework 4 Review

Mont oya

Homework 4 Review

• Large Language Models (LLMs) do Sub-Word Tokenization
• Each token ultimately is expressed as a vector (floating point numbers)

• Example
• 15 words becomes 20 tokens
• >>> string = 'Balkanization is the fragmentation of a larger region or state
into smaller regions or states.'

• {'input_ids': [101, 18903, 2734, 1110, 1103, 17906, 1891, 1104, 170, 2610,
1805, 1137, 1352, 1154, 2964, 4001, 1137, 2231, 119, 102], 'token_type_ids':
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1]}

• >>> len(encoded['input_ids'])
• 20
• >>> tokenizer.decode(encoded['input_ids'][1])
• 'Balkan'
• >>> tokenizer.decode(encoded['input_ids'][2])
• '##ization'

Homework 4 Review

• Stingy Sub-word tokenization (vocab. size is a problem)
• big vocabulary size forces the model to have an enormous

embedding matrix as the input and output layer
• GPT: vocab size: 40,478.
• GPT-2: vocab size: 50,257. bytes as (base) characters: 256. 50K

merges
• WordPiece (BERT): merge most common bigram characters

Mont oya

• Someone tried:
• “I came, I saw, I conquered”

• LLMs can't know every word!

attributed to
Julius Caesar

Homework 4 Review

• GPT-2:
• 8 bits as base characters
• Latin-1 character set

assumed
• Therefore, UTF-8

corruption?

• Curse/expletive words are probably filtered out too… er, actually no.
Four Weddings and a Funeral
(movie)

Homework 4 Review

• It can ignore (ungrammatical) context, take the last (few) words as the
new starting point

Homework 4 Review

Language: infinite employment of finite means (von Humboldt, cited by Chomsky).
• Also "Galileo expressed his or an amazement at what is in fact an astonishing fact with a

finite number of symbols one can construct in the mind an infinite number of linguistically
formulated thoughts and can even go on to reveal to others who have no access to our
minds their innermost workings." 2023 Keio Lecture 2 (00:36) (Chomsky)

• Sod it, why not?

Homework 4 Review

He chested the ball down, swivelled and cracked a
sod-it-why-not shot that took a slight deflection off
Evans and beat the diving Onana at the near post.
(Guardian 9/3/2023)

Homework
4 Review
Chomsky (1956)

Homework 4 Review

• Colorless green ideas sleep furiously

Homework 4 Review
5! = 120
permutations

Homework 4 Review

 ▼ punc
 ┌──────────────────────────┐
 │ dobj │
 ┌─────┐ │
 │ ▼ amod │
 │ ┌──────┐ │
 advmod │ │ ▼ dep │
 ┌───────┐ │ ┌───────┐ │
 ▼ │ │ │ ▼ ▼
Furiously sleep ideas orange colorless .

❌
doesn't make
sense either
syntactically or
semantically

Shell vs. Programming Language

From last time, a historic conflict over quoting behavior (' ").
• On the command line:
• the Terminal (Shell) gets first dibs, and
• the programming language, e.g. Perl, gets seconds

• Choice:
• Understand the quoting rules for the Shell, or
• Write your program always using a plain text file, e.g. prog.perl, run using:
perl prog.perl
• advantage: you don't have to worry about the Shell quoting rules

Windows PowerShell and Python

doubled single quotes inside single-
quoted string

single quotes inside double-quoted
string

Python uses single and double quotes
interchangeably to delimit strings.
• Unquoted string is a variable name (or keyword)

Windows PowerShell and Perl

Perl is quirky on Windows:
• " needs to be \"
• Inside single quotes, \" is ok to Perl
• Inside double quotes, needs to be \`"

Bash Shell quoting

• Bash shell (MacOS, Linux):
• manual: http://www.gnu.org/software/bash/manual/

want this (@a is an array):
@a=('a', 'b', 'c')
but we can't write:
perl -e '@a=(\'a\',\'b\',\'c\'); print "@a\n"'
So what can we do? (use double quoting: see next slide)

1. ' … ' fine if no ' inside
2. ' … ' … ' … ' doesn't work
3. ' … \' … \' …' cannot work

http://www.gnu.org/software/bash/manual/

Bash Shell quoting

• Bash
shell
(MacOS,
Linux):

can write \" (but not elegant):
perl -e "@a=(\"a\",\"b\",\"c\"); print \"@a\n\""

perlintro

https://perldoc.perl.org/perlintro.html

https://perldoc.perl.org/perlintro.html

perlintro

• Please read the Scalars ($) section …

Machine$ is my prompt, don't type that!
• I am using the terminal as the file input to Perl
• Type control-D (EOF = End Of File) to send to Perl.

PS C:\Users\sandiway> is my prompt, don't type that!
• I am using the terminal as the file input to Perl
• Type control-Z RETURN (EOF) to send to Perl.

control-D

control
-Z

perlintro

Non-scalar data type: array
• prefix with @, array is @name (name = array name)
• indexed from 0
• $name[index], an element of the @name array (notice scalar $)
• $#name, index of last element
• print "@name" (spaces inserted), print @name (no spaces)

controlled by system variable $" default value: a space

perlintro

not in Python

Python a[2:]

Python a[:4]

perlintro
• Python• Perl

perlintro
Notes from the tutorial:
• semicolon (;) is not always necessary
• Command separator semantics vs. end of command (termination) token
• Best practice? Terminate every command with a semicolon

• Variable types:
• Every variable type has its own namespace. (cf. Python)
• This means that $foo and @foo are two different variables.
• It also means that $foo[1] is a part of @foo, not a part of $foo. This may seem

a bit weird, but that's okay, because it is weird.

Perl Arrays

like a simple ordered list… (in Python, we use a list/sequence)
• Literal:

• @ARRAY = (… , … , …) (round brackets; comma separator) Python: array = [… , … , …]
• Access:

• $ARRAY[INDEX] (zero-indexed; negative indices ok; slices ok) Python: array[index]
• Index of last element:

• $#array (a scalar)
• Last element

• $array[$#array] or $array[-1] Python: array[-1]
• Slice of an array

• @array[i..j] (i,j indices) Python: array[i:j] (i/j optional also step, e.g. ::-1)
• Coercion

• @ARRAY #size in scalar context Python: len(array)
• scalar(@ARRAY)

Perl Arrays

• Built-in arrays:
• @ARGV (command line arguments; coercion possible)
• $ARGV[0] (1st argument)
• $0 (program name)
• @_ (sub(routine) arguments)

• Example:

myprog.perl

Perl Arrays

• Python argv:
• import sys
• sys.argv (list of command arguments as strings)
• sys.argv[0] (Python script name)
• sys.argv[1] (1st argument)
• Example:
myprog.py

int(sys.argv[1]) to convert string into an integer

Perl Arrays

Perl Arrays

• Built-in functions:
• sort @ARRAY; reverse @ARRAY;
• push @ARRAY, $ELEMENT; pop @ARRAY; (operates at right end of array)
• shift @ARRAY; unshift @ARRAY, $ELEMENT, (left end of array)
• splice @ARRAY, $OFFSET, $LENGTH, $ELEMENT

• $ELEMENT above can be @ARRAY

• Python:
• sorted(array) (new array), array.sort() (modify array), array.reverse()
• NO push (use array.append() instead), array.pop(),
• No shift/unshift etc… (but can use slicing and concatenation)

perlintro: Perl Arrays

Python doesn't have these defined but can be simulated via slicing and concatenation:
array[1:]
list + array

Similar to pop/push, but operates at the left end of the array

perlintro: Perl Arrays

