LING/C SC/PSYC 438/538

Lecture 5
Sandiway Fong

Today's Topics

* Homework 4 Review

* A bit more on quoting

* perlintro: scalars and arrays
* Next time: Homework 5

Homework 4 Review

*Lift a locks creen

Hello, my name is Inigo Mont oya . Mont oya

Written by Transformer - ! 1CE.CO &N Life is like riding a DJQ y\l/g

concrete abstract deaf He ran shoebox

ness -sized errands in his

Is “ness” a suffix? es and baskets in the front

es and carried a large wooden

Homework 4 Review

* Large Language Models (LLMs) do Sub-Word Tokenization

Each token ultimately is expressed as a vector (floating point numbers)

* Example

15 words becomes 20 tokens

>>> string = 'Balkanization is the fragmentation of a larger region or state
into smaller regions or states.'

{'input_ids': [101, 18903, 2734, 1110, 1103, 17906, 1891, 1104, 170, 2610,
1805, 1137, 1352, 1154, 2964, 4001, 1137, 2231, 119, 102], 'token_type_ids"':
[, 0, 0, 0, ©0, ©, 0, 0, 0, 0, 0, 0, O, O, 0, 0, 0, 0, O, O],
'attention_mask': 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1]}

>>> len(encoded['input_ids'])

20

>>> tokenizer.decode(encoded['input_ids'][1])

‘Balkan'

>>> tokenizer.decode(encoded['input_ids'][2])

"##ization'

Homework 4 Review

* LLMs can't know every word! * Someone tried:

e “I came, | saw, | conquered”

Hello, my name is Inigo Mont oya <:<

Veni, vidi, vid

Written by Transformer - bo,

* Stingy Sub-word tokenization (vocab. size is a problem)

* big vocabulary size forces the model to have an enormous
embedding matrix as the input and output layer

* GPT: vocab size: 40,478. attributed to

e GPT-2: vocab size: 50,257. bytes as (base) characters: 256. 50K Julius Caesar
merges

* WordPiece (BERT): merge most common bigram characters

Homework 4 Review

When the stars e GPT-2:
e ha » 8 bits as base characters
e Latin-1 character set
,tha assumed
* Therefore, UTF-8
ing corruption?
The answer is simple though. The input in the stars has been corrupted by introducing letters
from another alphabet that look exactly the same: When the stars.

* Curse/expletive words are probably filtered out too... er, actually no.

Fuckity] Four Weddings and a Funeral
(movie)

Homework 4 Review

* [t can ignore (ungrammatical) context, take the last (few) words as the
new starting point

ZeuejGtpWb ZeuejGtpWb the
3GxzHZ same way | would
8GjZT3 man of the hour
k8g4Yq man behind the first

Homework 4 Review

Language: infinite employment of finite means (von Humboldt, cited by Chomsky).

* Also "Galileo expressed his or an amazement at what is in fact an astonishin Ifact with a
finite number of symbols one can construct in the mind an infinite number of linguistically
formulated thoughts and can even go on to reveal to others who have no access to our
minds their innermost workings." 2023 Keio Lecture 2 (00:36) (Chomsky)

* Sod it, why not?

"Sod it, why not?" is an informal expression used to convey a casual or carefree attitude
toward making a decision or taking arisk. It suggests a willingness to go ahead with
something even if it might seem impulsive or unconventional. It's often used when someone

wants to do something on a whim without overthinking it.

Sod it, why not|

Homework 4 Review

A sod-it-why-not|

He chested the ball down, swivelled and cracked a
sod-it-why-not shot that took a slight deflection off
Evans and beat the diving Onana at the near post.
(Guardian 9/3/2023)

Homework
4 Review

Chomsky (1956)

grammar. There is no general relation between the
frequency of a string (or ite component parts) and
its grammaticalness., We can see this most clearly
by considering such strings as

(14) colorless green ideas sleep furiously

which is a grammatical sentence, even though it ie
fair to assume that no pair of its words may ever
have occurred together in the past. Notice that a
speaker of English will read (14) with the
ordinary intonation pattern of an English sentence,
while he will read the equally unfamiliar string

(15) furiously sleep ideas green colorless

with a falling intonation on each word, as in

Homework 4 Review

* Colorless green ideas sleep furiously

Colorless green

and black.
or orange, but

/yellow, with

Colorless green ideas

are the most

Colorless green ideas sleep

with the sun.

Colorless green ideas sleep furiously

Colorless green ideas sleep furiously about it, for some time unknown .

Homework 4 Review

51=120

permutations (Ccolorless (33)) (green (J1)) (sleep (NN)) (furiously (RB)) (ideas (NNS)) (.

k(colorless (33)) (green (J1)) (ideas (NNS)) (sleep (VBP)) (furiously (RB)) (. (.)))
((colorless (J1)) (green (JJ1)) (ideas (NNS)) (furiously (RB)) (sleep (NND) (.
((colorless (31)) (green (J1)) (sleep (NN)) (ideas (NNS)) (furiously (RB)) (.

((colorless (31)) (green (J1)) (furiously (J1)) (ideas (NNS)) (sleep (NND) (.
((colorless (31)) (green (JJ1)) (furiously (RB)) (sleep (VB)) (ideas (NNS)) (.
((colorless (JJ)) (ideas (NNS)) (green (J1)) (sleep (NN)) (furiously (RB)) (.
((colorless (J31)) (ideas (NNS)) (green (J1)) (furiously (RB)) (sleep (NN)) (.
((colorless (J1)) (ideas (NNS)) (sleep (VBP)) (green (33)) (furiously (RB)) (. (.)))
((colorless (J31)) (ideas (NNS)) (sleep (VBP)) (furiously (RB)) (green (31)) (. (.)))
((colorless (J1)) (ideas (NNS)) (furiously (RB)) (green (J1)) (sleep (NND) (. (.D))

lalalalaXaXaka
A A
VN

)
J
)
J
J
)
J
D)
J

Colorless sleep

((colorless (J31)) (ideas (NNS)) (furiously (RB)) (sleep (VBP)) (green (31)) (. (.)))
((colorless (J31)) (sleep (NN)) (green (J1)) (ideas (NNS)) (furiously (RB)) (.

<D
¢&o

Colorless sleep green

((colorless (J1)) (sleep (NN)) (green (J1)) (furiously (RB)) (ideas (NNS)) (.

Colorless sleep green furiouslyi

Colorless sleep green furiously ideas

(green), the color

, @ mind of thoughts

Along sleep

Homework 4 Review

v punc
| |
dob]
I ! doesn't make
v amod .
sense either
1 .
advmod | v dep syntactically or
| | | | | semantically
v | | v v

Furiously sleep ideas orange colorless .

Shell vs. Programming Language

From last time, a historic conflict over quoting behavior (' ").

* On the command line:
* the Terminal (Shell) gets first dibs, and
* the programming language, e.g. Perl, gets seconds

* Choice:
* Understand the quoting rules for the Shell, or
* Write your program always using a plain text file, e.g. prog.perl, run using:
perl prog.perl
e advantage: you don't have to worry about the Shell quoting rules

Windows PowerShell and Python

LN Select Windows PowerShell

PS C:\Users\sandiway> python

Traceback (most recent call last):
File "<string>", line 1, in <module>

NameError: name 'hello' is not defined

PS C:\Users\sandiway> python

hello

PS C:\Users\sandiway> python

Traceback (most recent call last):
File "<string>", line 1, in <module>

NameError: name ‘'hello' is not defined

PS C:\Users\sandiway> python

Traceback (most recent call last):
File "<string>", line 1, in <module>

NameError: name 'hello' is not defined

PS C:\Users\sandiway> python

hello

PS C:\Users\sandiway> _

Python uses single and double quotes
interchangeably to delimit strings.
e Unquoted string is a variable name (or keyword)

doubled single quotes inside single-
guoted string

single quotes inside double-quoted
string

Windows PowerShell and Per]

LN Windows PowerShell

PS C:\Users\sandiway>
hello

PS C:\Users\sandiway>
hello\n

PS C:\Users\sandiway>
PS C:\Users\sandiway>
class

PS C:\Users\sandiway>
hello class

PS C:\Users\sandiway>
hello

PS C:\Users\sandiway>
hello

PS C:\Users\sandiway>

$word

Perl is quirky on Windows:
 "needsto be\"

* Inside single quotes, \" is ok to Perl

* Inside double quotes, needs to be \™

Bash Shell quoting

e Bash shell (MacOS, Linux):

* manual: http://www.gnu.org/software/bash/manual/
3.1.2.2 Single Quotes

Enclosing characters in single quotes (‘') preserves the literal value of each character
within the quotes. A single quote may not occur between single quotes, even when
preceded by a backslash.

1. ' .. 'fineifno'inside
2. " ' ' .. "doesn't work
want this (@a is an array): 3. ' .. \' .. \'' .."cannot work

@a=(lal’ Ibl’ ICI)

but we can't write:

perl —e '@a=(\'a\',\'b\',\'c\'"); print "@a\n"'

So what can we do? (use double quoting: see next slide)

http://www.gnu.org/software/bash/manual/

Bash Shell quoting

e Bash
shell
(MacOS,
Linux):

3.1.2.3 Double Quotes

En?

Enclosing characters in double quotes (‘") preserves the literal value of all characters
within the quotes, with the exception of ‘$’, *>’, “\’, and, when history expansion is
enabled, ‘1’. When the shell is in POSIX mode (see Bash POSIX Mode), the ‘!’ has no
special meaning within double quotes, even when history expansion is enabled. The
characters ‘$’ and ‘*’ retain their special meaning within double quotes (see Shell
Expansions). The backslash retains its special meaning only when followed by one of the
following characters: ‘s’, “>’, *"’, “\’, or newline. Within double quotes, backslashes
that are followed by one of these characters are removed. Backslashes preceding
characters without a special meaning are left unmodified. A double quote may be quoted
within double quotes by preceding it with a backslash. If enabled, history expansion will
be performed unless an ‘!’ appearing in double quotes is escaped using a backslash. The

backslash preceding the ‘!’ is not removed.

can write \" (but not elegant):
perl _e "@a=(\"a\",\"b\",\"C\"); print \u@a\n\uu

perlintro

https://perldoc.perl.org/perlintro.html

¥ perldoc.perl.org/perlintro (-]
More detailed information about Perl syntax can be found in perlsyn.

Perl variable types

Perl has three main variable types: scalars, arrays, and hashes.
Scalars

A scalar represents a single value:

my $animal = "camel";
my $answer 42;

Scalar values can be strings, integers or floating point numbers, and Perl will automatically convert between them as required. You
have to declare them using the my keyword the first time you use them. (This is one of the requirements of use strict; .)

Scalar values can be used in various ways:

print $animal;
print "The animal is $animal\n";
print "The square of $answer is ", $answer * $answer, "\n";

Perl defines a number of special scalars with short names, often single punctuation marks or digits. These variables are used for all

https://perldoc.perl.org/perlintro.html

perlintro

* Please read the Scalars (S) section ...

[Machlne$ plelrl) Machine$ is my prompt, don't type that!
$ar.‘1ma]- = "camel"; . . . | am using the terminal as the file input to Perl
print "Selected animal is $animal\n" * Type control-D (EOF = End Of File) to send to Perl.

Selected animal is camel

AECERCR I control-D

¥ Windows PowerShell PS C:\Users\sandiway> is my prompt, don't type that!

PS C:\Users\sandiway> perl * | am using the terminal as the file input to Perl
$ans = 42; * Type control-Z RETURN (EOF) to send to Perl.
print "$ans squared is ", $ans * $ans, "\n"

"L
42 squared is 1764

control -
Z PS C:\Users\sandiway> _

perlintro

Non-scalar data type: array
* prefix with @, array is @name (name = array name)

* indexed from O

- $name [index], an element of the @name array (notice scalar S)
« $#name, index of last element

e print "@name" (spaces inserted), print @hame (no spaces)

controlled by system variable $" default value: a space

perlintro

[Machine$ perl '®a=(1,2,3,4,5); print $al-1]1,"\n"'

5

[Machine$ perl '®a=(1,2,3,4,5); print "@al[1..3]1\n"'

2 3 4

[Machine$ perl 'Pa=(1,2,3,4,5); print @al[1..3],"\n"!'

234

[Machine$ perl 'Pa=(1,2,3,4,5); print "@al[®@,2,3]\n"' not in Python
134

[Machine$ perl -e 'a=(1,2,3,4,5); print "@al[2..]\n"'

syntax error at -e line 1, near "..]"

Execution of -e aborted due to compilation errors.

[Machine$ perl -e 'a=(1,2,3,4,5); print "@al[2..%$#al\n"' Python a[2:]
345

[Machine$ perl -e 'Pa=(1,2,3,4,5); print "@al[..3]\n"'

syntax error at -e line 1, near "[.."

Execution of —-e aborted due to compilation errors.

[Machine$ perl -e 'a=(1,2,3,4,5); print "@al[@..3]1\n"' Python a[:4]
1234

perlintro

* Perl

[Machine$ perl '®a=(1,2,3,4,5); print $al-1]1,"\n"'

5

[Machine$ perl 'a=(1,2,3,4,5); print "eal[1..3]1\n"'
2 3 4

[Machine$ perl '®a=(1,2,3,4,5); print @al[1..3],"\n"!'
234

[Machine$ perl '®a=(1,2,3,4,5); print "@al[9,2,3]1\n"'
134

[Machine$ perl -e '®a=(1,2,3,4,5); print "@®al[2..]\n"'
syntax error at -e line 1, near "..]"

Execution of -e aborted due to compilation errors.
[Machine$ perl -e '®a=(1,2,3,4,5); print "Qal[2..$#al\n"
345

[Machine$ perl -e '®a=(1,2,3,4,5); print "@al[..3]\n"'
syntax error at -e line 1, near "[.."

Execution of -e aborted due to compilation errors.
[Machine$ perl -e '®a=(1,2,3,4,5); print "@a[@..3]1\n"'
1234

>>> a = [1,2,3,4,5]
[>>> print(al[-11])

5

[>>> print(al1:4])

[2, 3, 4]

[>>> print(al[2:])
[3, 4, 5]

[>>> print(al:4])
(1, 2, 3, 4]

>>>

perlintro

Notes from the tutorial:

* semicolon (;) is not always necessary
 Command separator semantics vs. end of command (termination) token

* Best practice? Terminate every command with a semicolon

* Variable types:
* Every variable type has its own namespace. (cf. Python)
* This means that Sfoo and @foo are two different variables.

* |t also means that Sfoo[1] is a part of @foo, not a part of Sfoo. This may seem
a bit weird, but that's okay, because it is weird.

Perl Arrays

like a simple ordered list... (in Python, we use a list/sequence)

 Literal:
* @ARRAY=(...,...,..) (round brackets; comma separator) Python: array=1..., ..., ...]

* Access:
e SARRAY[INDEX] (zero-indexed; negative indices ok; slices ok) Python: array[index]

Index of last element:

» SHarray (a scalar)
* Last element

 Sarray[S#array] or Sarray[-1] Python: array[-1]
* Slice of an array

e @arrayli..j] (i,j indices) Python: array[i:j] (i/j optional also step, e.g. ::-1)
* Coercion

* @ARRAY #size in scalar context Python: len(array)

. scalar(@ARRAY)

Perl Arrays

* Built-in arrays:

 QARGV (command line arguments; coercion possible)
« $ARGV[0] (15t argument)
. $0 (program name)
e @_ (sub(routine) arguments)
* Example:

myprog.perl

1print "\$0:$0\n"; [Machine$ perl myprog.perl 1
2print "$ARGV[@]\n"; $0:myprog.perl
3 $ARGV[@]+$ARGV[@], "\n"q 1

2
Machine$ N

Perl Arrays

* Python argyv:
« import sys

* SyS.argv (list of command arguments as strings)

* sys.argv (o] (Python script name)

* sys.argv|[1] (1t argument)

* Example:
myprog. py
1import sys [Machine$ python3 myprog.py 1
2print("argv[@]:" + sys.argv[0]) argv[@]:myprog.py
3print(sys.argv[1]+sys.prgv[1]) 11

Machine$ §

int(sys.argv[1]) to convert string into an integer

Perl Arrays

1print "\$0:$0\n"; ' [Machine$ perl myprog.perl 1
Zfrlu; "$ARGV[@]\n"; $0:myprog.perl

3print $ARGV[@]+$ARGV[O],"\n"; | [B

4print $ARGV[@].$ARGV[O],"\n" 11

Machine$ B

Perl Arrays

* Built-in functions:
* sort @ARRAY; reverse @ARRAY,;
* push @ARRAY, SELEMENT; pop @ARRAY; (operates at right end of array)
* shift @ARRAY; unshift @ARRAY, SELEMENT, (left end of array)

* splice @ARRAY, SOFFSET, SLENGTH, SELEMENT
o SELEMENT above can be @ARRAY

* Python:
 sorted(array) (new array), array.sort() (modify array), array.reverse()

* NO push (use array.append() instead), array.pop(),
* No shift/unshift etc... (but can use slicing and concatenation)

perlintro: PerlArrays

o shift ARRAY Similar to pop/push, but operates at the left end of the array

o shift

Shifts the first value of the array off and returns it, shortening the array by 1 and moving everything down. If
there are no elements in the array, returns the undefined value. If ARRAY is omitted, shifts the @__array within

e unshift ARRAY,LIST

Does the opposite of a shift. Or the opposite of a push, depending on how you look at it. Prepends list to the
front of the array and returns the new number of elements in the array.

Python doesn't have these defined but can be simulated via slicing and concatenation:

array[1:]
list + array

perlintro: PerlArrays

¢ splice ARRAY,OFFSET,LENGTH,LIST

o splice ARRAY,OFFSET,LENGTH
o splice ARRAY,OFFSET
e splice ARRAY

Removes the elements designated by OFFSET and LENGTH from an array, and replaces them with the
elements of LIST, if any. In list context, returns the elements removed from the array. In scalar context, returns
the last element removed, or undef if no elements are removed. The array grows or shrinks as necessary. If
OFFSET is negative then it starts that far from the end of the array. If LENGTH is omitted, removes everything
from OFFSET onward. If LENGTH is negative, removes the elements from OFFSET onward except for -LENGTH
elements at the end of the array. If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is
past the end of the array and a LENGTH was provided, Perl issues a warning, and splices at the end of the
array.

The following equivalences hold (assuming $#a >= $1i)

push(@a, $x,8y) splice(@a,@a,0,$x,8y)
pop(@a) splice(@a,-1)
shift(@a) splice(@a,0,1)

unshift(@a, $x,$y) splice(@a,0,0,$x,Sy)
s$a[s$i] = Sy splice(Qa,$i,1,8y)

u s W N
e o o e e

