LING/C SC/PSYC 438/538

Lecture 24

Sandiway Fong

Last Time

* SWI-Prolog introduced: a logic-based programming language

* Key Concepts so far:
* facts: what is true — example: bird
* rules: logical inference — example: canfly if bird
* recursive rules — examples: factorial and 2*
* infinite loop (recursion) — example: factorial definition without n > 0 guard
* enumeration (language) — example: Z*
* backtracking: explore multiple possible paths of execution
e control of backtracking using fail (initiate backtracking) and ! (cut: i.e. stop)

Today

* Homework 13.

* Three formalisms, same expressive power (regular language family)

1. Regular expressions
2. Finite State Automata

3. Regular Grammars

We'll look at this case
using Prolog

Chomsky Hierarchy

Chomsky Hierarchy
* division of grammar into subclasses partitioned by “generative power/capacity” | | fi"iteds'fate ‘
tape head transducer
* Type-0 General rewrite rules
* Turing-complete, powerful enough to encode anything "computable"
Natural : , , (1) 10
* can simulate a Turing machine
languages: * Type-1 Context-sensitive rules o -
. ‘\ 0.1 0,2 -
do they * weaker, but still very powerful ™) () (=)
s A v Al
tape
here? * Type-2 Context-free rules
+ weaker stil HEEEEEEREEEE.
* a"b" Pushdown Automata (PDA) read /write
* Type-3 Regular grammar rules /0,8

* very restricted
. Regular Expressions a*b*
. Finite State Automata (FSA)

Chomsky Hierarchy

-

F SA L Regular

Expressions

'\/

Regular Grammars

TM = DCG = Perl =

Prolog Grammar Rule System

* known as “Definite Clause Grammars” (DCG)
* based on type-2 restrictions (context-free grammars)
but with extensions
(powerful enough to encode the hierarchy all the way up to type-0)

Prolog was originally designed (1970s) to also support natural language
processing

we’ll start with the bottom of the hierarchy
* j.e. the least powerful
* regular grammars (type-3)

Definite Clause Grammars (DCG)

* Background
* a “typica
* <N,T,P,S>
* aset of non-terminal symbols (N)
* these symbols will be expanded or rewritten by the rules
* aset of terminal symbols (T)
* these symbols cannot be expanded
* production rules (P) of the form
e LHS —» RHS

* Inregular and CF grammars, LHS must be a single non-terminal symbol
* RHS: a sequence of terminal and non-terminal symbols: possibly with restrictions, e.g. for regular grammars

* adesignated start symbol (S)
¢ anon-terminal to start the derivation

III

formal grammar contains 4 things

* Language
* set of terminal strings generated by <N,T,P,S>
e e.g. through a top-down derivation

Definite Clause Grammars (DCG)

Example grammar (regular):
Background
S—>aB
* a “typical” formal grammar contains 4 things B —> aB
« <N,T,PS> B— bC
* aset of non-terminal symbols (N) B—>b
* aset of terminal symbols (T) C—bC
* production rules (P) of the form LHS — RHS C—ob
* LHS = left hand side
* RHS =right hand side Notes:

* adesignated start symbol (S) « Start symbol: S

* Non-terminals: {S,B,C} (uppercase letters)
e Terminals: {a,b} (lowercase letters)

DefiniteClause Grammars (DCG)

* Example
* Formal grammar DCG format DCG format:
* S—aB s --> [a],b. both inal q inal bols begi
« B_>aB b —-> [a],b. oth terminals and non-terminal symbols begin
with lowercase letters
* B—>bC b -——-> [b],c. . .
« Bosb b —=> [b] * variables begin with an uppercase letter (or
- underscore)
* C—>bC c -——> [b],c. i< th . bol
. Cob ¢ —-> [b]. ——> is the rewrite symbo
* terminals are enclosed in square brackets (/ist
. Notes: notation)
* Start symbol: S * nonterminals don’t have square brackets
* Non-terminals: {S,B,C} surrounding them
* (uppercase letters) * the comma (,) represents the concatenation
* Terminals: {a,b} symbol
* (lowercase letters) e aperiod (.)is required at the end of every DCG

rule

Regular Grammars

* Regular or Chomsky hierarchy type-3 grammars
* are a class of formal grammars with a restricted RHS
* LHS - RHS “LHS rewrites/expands to RHS”
* all rules contain only a single non-terminal, and (possibly) a single terminal) on the right hand side

e Canonical Forms:

x —--> vy, [t]. x —-—> [t]. (left recursive) Terminology:
or
x -=> [t], V. x —=> [t]. (right recursive) ”left/right linear”

* where x and y are non-terminal symbols and
* t (enclosed in square brackets) represents a terminal symbol.

* Note:
* can’t mix these two forms (and still have a regular grammar)!
* can’t have both left and right recursive rules in the same grammar

10

Definite Clause Grammars (DCG)

What language does our regular grammar generate?

one or more a’s followed by one
or more b’s

By writing the grammar in Prolog,
we have a ready-made recognizer program

* no need to write a separate grammar rule interpreter (in this case)

Example query (set membership):
e ?- s([la,a,b,b,b],I1]).
* Yes
e ?- s([la,b,al,[]).
Note:
* Query uses the start symbol s with two arguments:

* (1) sequence (as a list) to be recognized and
* (2) the empty list []

1. s --> [a],b.

2. b --> [a],b.

3. b --> [b],c.

4. b --> [b].

5. ¢ -—> [b],

6. c --> [b].
Prolog lists:

In square brackets, separated by commas

e.g.[a] [a,b,c]

Definite Clause Grammars (DCG)

[N ling538-20 — swipl — 80x26 .
. L]
T file on course webpage:
Welcome to SWI-Prolog (threaded, 64 bits, version 8.2.0)

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software. . apbp «Pro log
Please run ?- license. for legal details.

For online help and background, visit https://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).

[?- [apbpl.
true.

[?- s([a,b],[]1).
true.

[?- s([a,b,b],[1).
true ;

[?- s([a,a,a,b,b],[]1).
true ;

[?- s([b,a,b],[]1).

|

Prolog lists revisited

* Perl lists: Python lists:
« @list = ("a", "b", "c"); list = ["a", "b", "c"]
- @list = qw(a b c);
. @list = (); list = []
* Prolog lists:
« List = [a, b, c] (List is a variable; a — c are atoms)
« List = [a|[b]|[c|[11]] (a =head, tail = [b| [c|[1]])
e List = []

Mixed notation:
[a|[b,c]]
[a,b][c]]

Regular Grammars

* Tree representation

* Example a/\ There’s a choice of rules
e ?- s(la,a,bl,[]). for nonterminal b:
true Prolog tries the first rule

Derivation: 1.
S 2. b
[a], b (rule 1) 2
[a],[al,b (rule 2) 5: ¢ -—> [b];c. our a regular
[a],[a],[b] (rule 4) 6. ¢ -—> [b]. grammar

all terminals, so we stop

Using trace, we can observe the progress of the derivation...

Regular Grammars

 Tree representation

* Example /S\b Derivation:
d
e 2- s([a,a,b,b,bl, []). a/\b ?] X rule 1)
al, rule
7 [al,[a],b (rule 2)
& [a], [a],[b],c (rule 3)
| [a],[a],[b],[b],c (rule 5)
R ° [al, [al, (b1, [bl,[b] (rule 6)
3. b --> [b],c.
4. b --> [b].
5. ¢ --> [b],c.
6. c --> [b].

Prolog Derivations

* Prolog’s computation rule:
* Try first matching rule in the database
(remember others for backtracking)
» Backtrack if matching rule leads to failure
* undo and try next matching rule
(or if asked for more solutions)

* For grammars:
* Top-down left-to-right derivations
* left-to-right = expand leftmost nonterminal first
* Leftmost expansion done recursively = depth-first

Prolog Derivations

For a top-down derivation, logically, we have:

1. s --> [a],b.
° : 2. b --> [a],b.
Choice 3. b --> [b],c.
 about which rule to use for nonterminalsbandc 4. b --> [b].
5. ¢ --> [b],c.
* No choice 6. ¢ -—> [b].
* About which nonterminal to expand next
® BOttom up der|Vat|0n fOF [a,a,b,b] Prolog doesn't g|ve you bottom_up
1. [a],[a],[b],[b] derivations for free
2. [al,[a],[b],c (rule 6) ... you’d have to program it up separately
3. [a][al,b (rule 3)
4. [a],b (rule 2)
5.

S (rule 1)

SWI Prolog

* Grammar rules are translated when the program is

loaded into Prolog rules.

* Sheds light on the mystery why we have to type two
arguments with the nonterminal at the command

prompt

e Recall list notation:
* [1][2,3,4]] = [1,2,3,4]

SOVl WN B

o U1 W N

. s([alA], B)
. b([alA], B) :
. b([blA], B) :
. b([blIA], A).
. c([blA], B) :
. c([blA], A).

Nn N T T T n

--> [a],b.
--> [a],b.
--> [b],c.
--> [b].
--> [b],c.
--> [b].

:- b(A, B).

b(A, B).
c(A, B).

c(A, B).

FSA and a Regular Grammar

e Regular Grammar in Prolog.

4. the set of all strings from the alphabet a.b such that each @ is immediately (SiaElEE

preceded by and immediately followed by a b: frue.
* Let’s begin with something like (bbp.prolog): s
s --> [b], b.
e g —--> [b:l, S. [:;u:(gb,b,b],[]).
b --> [b].
* (start symbol S; grammar generates bb+) [?2- s([b,b,b,al,[1).

Let’s modify this grammar!

[?- s([b],[]).

[?- s([1,[1).

FSA and a Regular Grammar

e Regular Grammar in Prolog.
4. the set of all strings from the alphabet a.b such that each « 1s immediately
preceded by and immediately followed by a b:

* Let’s begin with something like: 72— s(L,[1).

«s --> [b], b. L Eb' bl
hd S -—> I:b:l, S. [b, b,

b --> [b].

* (start symbol S; grammar generates bb+)

[bl I
[bl I
[bl I
It enumerates too! [b, b,
[bl I
[bl I

[b,

OO UOTUOCUTUTUTUT T =

- -~ - - - -~ -~ - d

L
L
L
L
L
L
L
L
L

OO UTUTUTUTUT T =

- ™ W™ W™ W™ W W L
OO T UTUTUT O =
- ™ wm wm W W g

OO T UT T O =

-~ -~ - - - —d

FSA and a Regular Grammar

4. the set of all strings from the alphabet a.b such that each « 1s immediately
preceded by and immediately followed by a b:

e Regular Grammar in Prolog notation (bab.prolog):

es -—> []. % (s = ”start state”)
s --> [b], seen_b. % ("seen a b”)

s --> [b], s.

« seen_b --> [a], seen_a. % ("expect a b” next)

seen_a --> [b].
seen_a --> [b], seen_b.
seen_a --> [b], seen_a.

FSA and a Regular Grammar

« Compare the FSA with our Regular Grammar (RG) bab.prolog

s -—> []. % (s = start state)
s --> [b], seen_b.
s --> [b], s.

seen_b --> [a], seen_a.

seen_a --> [b].
seen_a --> [b], seen_b.
seen_a --> [b], seen_a.

There is a straightforward correspondence between right recursive RGs and FSA

FSA and a Regular Grammar

* Informally, we can convert RG to a FSA
* by treating
* non-terminals as states

e and introducing (new) states for rules of the form x --> [a].

[Powerpoint animation]
in order of the RG rules ‘
i b) 2
é> '
b a s

NOoO Ul b U)

S -—>
S -—->
S -—->
b -->
a -->
a -->
a -->

[]1.

[b],
[b],
e

[b],
[b],

FSA and a Regular Grammar

* File bab.prolog:
?— [bab]. % load
true.

?- s([b,a,bl,[]).
true ;
false.

?- s([b,a,a,bl,[]).

false.

?7- s([b,bl, []).
true.

?— s(I[bl,I1).

true.

?— s([1,[1).

true.

?— s([cl,]).

false.

?- s([b,a,b,b,al,[]).
false.

?_
s([b,a,b,b,a,bl, []).

true ;
false.

Homework 13

4. the set of all strings from the alphabet a.b such that each « 1s immediately
preceded by and immediately followed by a b;

Question 1:

* Using the grammar file bab.prolog, describe what happens when
you run the Prolog query s(List, []). typingin ; repeatedly (for
more answers)?

Question 2:

* Does the query above enumerate the language described in 4. above?
Explain. What does it enumerate?

Homework 13

* Prolog abbreviates the output by default.
* Note: you can type w (write) to write out the entire answer

* Example:
«?-X=11,2,3,4,5,6,7,8,9,10,11,12].
X =1[1, 2, 3, 4, 5, 6, 7, 8, 9|...].
«?-X=11,2,3,4,5,6,7,8,9,10,11, 12] ; true.
X =1[1, 2, 3, 4, 5, 6, 7, 8, 9]. [write]
X =11, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12] ;

Homework 13

Question 3:

* Note that Prolog explores the search space by trying the rules in the
order in which they're written (Prolog's computation rule).

* Rearrange the order of the rules in bab.prolog so that the query in
Question 1, i.e. s(List, [])., followed by ; can generate the
strings

. [1,[b,a,bl, [b,a,b,b]l, [b,a,b,b,b]l andsoon..
e Give your modified grammar and show the run.

Homework 13

Question 4:

* Modify bab.prolog to enumerate the language:
1. []
2. bab
3. babcbab
4. babcbabcbab
5. babcbabcbabcbab etc..
 i.e.b(abcb)x*ab|e
* Note2=1{a, b, c}
e Show your grammar and run.
HINT: you want to add grammar rules.
. It also may help to think of a corresponding FSA.

Homework 13

e Usual Rules
* Make sure you submit everything in one PDF file

* If you like, you can include your modified Prolog grammars
as attachments

* Due date: by Sunday midnight
* 438/538 Homework 13 YOUR NAME

