
LING/C SC/PSYC 438/538
Lecture 24

Sandiway Fong

Last Time

• SWI-Prolog introduced: a logic-based programming language
• Key Concepts so far:
• facts: what is true – example: bird
• rules: logical inference – example: canfly if bird
• recursive rules – examples: factorial and Σ*
• infinite loop (recursion) – example: factorial definition without n > 0 guard
• enumeration (language) – example: Σ*
• backtracking: explore multiple possible paths of execution
• control of backtracking using fail (initiate backtracking) and ! (cut: i.e. stop)

Today

• Homework 13.
• Three formalisms, same expressive power (regular language family)

1. Regular expressions
2. Finite State Automata
3. Regular Grammars

We’ll look at this case
using Prolog

Chomsky Hierarchy

Chomsky Hierarchy
• division of grammar into subclasses partitioned by “generative power/capacity”

• Type-0 General rewrite rules
• Turing-complete, powerful enough to encode anything "computable"
• can simulate a Turing machine
• Type-1 Context-sensitive rules
• weaker, but still very powerful
• anbncn

• Type-2 Context-free rules
• weaker still
• anbn Pushdown Automata (PDA)

• Type-3 Regular grammar rules
• very restricted
• Regular Expressions a+b+

• Finite State Automata (FSA)

tape

tape head
finite state
transducer

Natural
languages:

do they
even fit
here?

read /write
⏪/ ⏹ / ⏩

Chomsky Hierarchy

Regular Grammars

FSA Regular
Expressions

TM = DCG = Perl =
Type-0

Type-3
Type-2

Type-1

Prolog Grammar Rule System

• known as “Definite Clause Grammars” (DCG)
• based on type-2 restrictions (context-free grammars)
• but with extensions
• (powerful enough to encode the hierarchy all the way up to type-0)
• Prolog was originally designed (1970s) to also support natural language

processing

• we’ll start with the bottom of the hierarchy
• i.e. the least powerful
• regular grammars (type-3)

Definite Clause Grammars (DCG)

• Background
• a “typical” formal grammar contains 4 things
• <N,T,P,S>

• a set of non-terminal symbols (N)
• these symbols will be expanded or rewritten by the rules

• a set of terminal symbols (T)
• these symbols cannot be expanded

• production rules (P) of the form
• LHS ® RHS
• In regular and CF grammars, LHS must be a single non-terminal symbol
• RHS: a sequence of terminal and non-terminal symbols: possibly with restrictions, e.g. for regular grammars

• a designated start symbol (S)
• a non-terminal to start the derivation

• Language
• set of terminal strings generated by <N,T,P,S>
• e.g. through a top-down derivation

Definite Clause Grammars (DCG)

Background

• a “typical” formal grammar contains 4 things

• <N,T,P,S>
• a set of non-terminal symbols (N)
• a set of terminal symbols (T)
• production rules (P) of the form LHS ® RHS

• LHS = left hand side
• RHS = right hand side

• a designated start symbol (S)

Example grammar (regular):
S ® aB
B ® aB
B ® bC
B ® b
C ® bC
C ® b

Notes:
• Start symbol: S
• Non-terminals: {S,B,C} (uppercase letters)
• Terminals: {a,b} (lowercase letters)

DefiniteClause Grammars (DCG)

• Example
• Formal grammar DCG format
• S ® aB s --> [a],b.
• B ® aB b --> [a],b.
• B ® bC b --> [b],c.
• B ® b b --> [b].
• C ® bC c --> [b],c.
• C ® b c --> [b].

• Notes:
• Start symbol: S
• Non-terminals: {S,B,C}
• (uppercase letters)
• Terminals: {a,b}
• (lowercase letters)

DCG format:
• both terminals and non-terminal symbols begin

with lowercase letters
• variables begin with an uppercase letter (or

underscore)

• --> is the rewrite symbol
• terminals are enclosed in square brackets (list

notation)
• nonterminals don’t have square brackets

surrounding them
• the comma (,) represents the concatenation

symbol
• a period (.) is required at the end of every DCG

rule

Regular Grammars

• Regular or Chomsky hierarchy type-3 grammars
• are a class of formal grammars with a restricted RHS

• LHS → RHS “LHS rewrites/expands to RHS”
• all rules contain only a single non-terminal, and (possibly) a single terminal) on the right hand side

• Canonical Forms:
x --> y, [t]. x --> [t]. (left recursive)
or
x --> [t], y. x --> [t]. (right recursive)

• where x and y are non-terminal symbols and
• t (enclosed in square brackets) represents a terminal symbol.

• Note:
• can’t mix these two forms (and still have a regular grammar)!
• can’t have both left and right recursive rules in the same grammar

10

Terminology:
“left/right linear”

Definite Clause Grammars (DCG)

• What language does our regular grammar generate?

• By writing the grammar in Prolog,
• we have a ready-made recognizer program

• no need to write a separate grammar rule interpreter (in this case)
• Example query (set membership):

• ?- s([a,a,b,b,b],[]).
• Yes
• ?- s([a,b,a],[]). No

• Note:
• Query uses the start symbol s with two arguments:
• (1) sequence (as a list) to be recognized and
• (2) the empty list []

one or more a’s followed by one
or more b’s

1. s --> [a],b.
2. b --> [a],b.
3. b --> [b],c.
4. b --> [b].
5. c --> [b],c.
6. c --> [b].

Prolog lists:
In square brackets, separated by commas
e.g. [a] [a,b,c]

Definite Clause Grammars (DCG)

• file on course webpage:
• apbp.prolog

Prolog lists revisited

• Perl lists: Python lists:
• @list = ("a", "b", "c"); list = ["a", "b", "c"]
• @list = qw(a b c);
• @list = (); list = []

• Prolog lists:
• List = [a, b, c] (List is a variable; a – c are atoms)
• List = [a|[b|[c|[]]]] (a = head, tail = [b|[c|[]]])
• List = []

Mixed notation:
[a|[b,c]]
[a,b|[c]]

Regular Grammars

• Tree representation
• Example

• ?- s([a,a,b],[]).
 true

1. s --> [a],b.
2. b --> [a],b.
3. b --> [b],c.
4. b --> [b].
5. c --> [b],c.
6. c --> [b].

Derivation:
s
[a], b (rule 1)
[a],[a],b (rule 2)
[a],[a],[b] (rule 4)

our a regular
grammar

Using trace, we can observe the progress of the derivation…

There’s a choice of rules
for nonterminal b:

Prolog tries the first rule

Through backtracking
It can try other choices

all terminals, so we stop

Regular Grammars

• Tree representation
• Example

• ?- s([a,a,b,b,b],[]).

1. s --> [a],b.
2. b --> [a],b.
3. b --> [b],c.
4. b --> [b].
5. c --> [b],c.
6. c --> [b].

Derivation:
s
[a], b (rule 1)
[a],[a],b (rule 2)
[a],[a],[b],c (rule 3)
[a],[a],[b],[b],c (rule 5)
[a],[a],[b],[b],[b] (rule 6)

Prolog Derivations

• Prolog’s computation rule:
• Try first matching rule in the database
 (remember others for backtracking)
• Backtrack if matching rule leads to failure
• undo and try next matching rule
 (or if asked for more solutions)

• For grammars:
• Top-down left-to-right derivations
• left-to-right = expand leftmost nonterminal first
• Leftmost expansion done recursively = depth-first

Prolog Derivations

For a top-down derivation, logically, we have:
• Choice
• about which rule to use for nonterminals b and c

• No choice
• About which nonterminal to expand next

1. s --> [a],b.
2. b --> [a],b.
3. b --> [b],c.
4. b --> [b].
5. c --> [b],c.
6. c --> [b].

• Bottom up derivation for [a,a,b,b]
1. [a],[a],[b],[b]
2. [a],[a],[b],c (rule 6)
3. [a],[a],b (rule 3)
4. [a],b (rule 2)
5. s (rule 1)

Prolog doesn’t give you bottom-up
derivations for free
… you’d have to program it up separately

SWI Prolog

• Grammar rules are translated when the program is
loaded into Prolog rules.
• Sheds light on the mystery why we have to type two

arguments with the nonterminal at the command
prompt
• Recall list notation:
• [1|[2,3,4]] = [1,2,3,4]

1. s --> [a],b.
2. b --> [a],b.
3. b --> [b],c.
4. b --> [b].
5. c --> [b],c.
6. c --> [b].

1. s([a|A], B) :- b(A, B).
2. b([a|A], B) :- b(A, B).
3. b([b|A], B) :- c(A, B).
4. b([b|A], A).
5. c([b|A], B) :- c(A, B).
6. c([b|A], A).

FSA and a Regular Grammar

• Regular Grammar in Prolog.

• Let’s begin with something like (bbp.prolog):
• s --> [b], b.
• s --> [b], s.
• b --> [b].
• (start symbol s; grammar generates bb+)

Let’s modify this grammar!

FSA and a Regular Grammar

• Regular Grammar in Prolog.

• Let’s begin with something like:
• s --> [b], b.
• s --> [b], s.
• b --> [b].
• (start symbol s; grammar generates bb+)

It enumerates too!

FSA and a Regular Grammar

• Regular Grammar in Prolog notation (bab.prolog):
• s --> []. % (s = ”start state”)
• s --> [b], seen_b. % (”seen a b”)
• s --> [b], s.

• seen_b --> [a], seen_a. % (”expect a b” next)

• seen_a --> [b].
• seen_a --> [b], seen_b.
• seen_a --> [b], seen_a.

FSA and a Regular Grammar

• Compare the FSA with our Regular Grammar (RG) bab.prolog
• s --> []. % (s = start state)
• s --> [b], seen_b.
• s --> [b], s.

• seen_b --> [a], seen_a.

• seen_a --> [b].
• seen_a --> [b], seen_b.
• seen_a --> [b], seen_a.

s seen
_b

seen
_a 4>

b

ab b

b

b

There is a straightforward correspondence between right recursive RGs and FSA

FSA and a Regular Grammar

• Informally, we can convert RG to a FSA
• by treating
• non-terminals as states
• and introducing (new) states for rules of the form x --> [a].

s>

b

aabb endb

b

b

1. s --> [].

2. s --> [b], b.

3. s --> [b], s.

4. b --> [a], a.
5. a --> [b].
6. a --> [b], b.
7. a --> [b], a.

[Powerpoint animation]
in order of the RG rules

FSA and a Regular Grammar

• File bab.prolog:
?- [bab]. % load
true.

?- s([b,a,b],[]).
true ;
false.

?- s([b,a,a,b],[]).
false.

?- s([b,b],[]).
true.

?- s([b],[]).
true.

?- s([],[]).
true.

?- s([c],[]).
false.

?- s([b,a,b,b,a],[]).
false.

?-
s([b,a,b,b,a,b],[]).
true ;
false.

Homework 13

Question 1:
• Using the grammar file bab.prolog, describe what happens when

you run the Prolog query s(List, []). typing in ; repeatedly (for
more answers)?

Question 2:
• Does the query above enumerate the language described in 4. above?

Explain. What does it enumerate?

Homework 13

• Prolog abbreviates the output by default.
• Note: you can type w (write) to write out the entire answer
• Example:
• ?- X = [1,2,3,4,5,6,7,8,9,10,11,12].
• X = [1, 2, 3, 4, 5, 6, 7, 8, 9|...].
• ?- X = [1,2,3,4,5,6,7,8,9,10,11,12] ; true.
• X = [1, 2, 3, 4, 5, 6, 7, 8, 9|...] [write]
• X = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] ;
• true.

Homework 13

Question 3:
• Note that Prolog explores the search space by trying the rules in the

order in which they're written (Prolog's computation rule).
• Rearrange the order of the rules in bab.prolog so that the query in

Question 1, i.e. s(List, [])., followed by ; can generate the
strings
• [], [b,a,b], [b,a,b,b], [b,a,b,b,b] and so on ..

• Give your modified grammar and show the run.

Homework 13

Question 4:
• Modify bab.prolog to enumerate the language:

1. []
2. bab
3. babcbab
4. babcbabcbab
5. babcbabcbabcbab etc…
• i.e. b(abcb)*ab|ε
• Note Σ = {a, b, c}
• Show your grammar and run.
• HINT: you want to add grammar rules.
• It also may help to think of a corresponding FSA.

Homework 13

• Usual Rules
•Make sure you submit everything in one PDF file
• If you like, you can include your modified Prolog grammars

as attachments
• Due date: by Sunday midnight
• 438/538 Homework 13 YOUR NAME

