LING/C SC/PSYC 438/538

Lecture 22

Sandiway Fong

Today's Topics

e Homework 11 Review

* Beyond regular languages:
1. {a"b" | n>1}, and
2. {1" | nis prime}
* A formal tool: the Pumping Lemma

Homework 11 Review

*Ql: Ly={wR| we L}

Homework 11 Review

* Q2: convert Ly = {wR| w € L} to a DFSA

Homework 11 Review

* Q3: Lgg = {WR| w € L}

Homework 11 Review

* Q4: Lgg = {WR| w € L } determinized

State Minimization

* Do you think you could build a machine
for L (= LRR) with fewer states? NOPE

* Brzozowski, J.A. Canonical regular
expressions and minimal state graphs ford
efinite events. In Proc. Sympos. Math.
Theory of Automata (New York, 1962),
pages 529-561. Polytechnic Press of
Polytechnic Inst. of Brooklyn, Brooklyn, N.Y.,
1963.

Beyond Regular Languages

* Beyond regular languages * That means no FSA, regex (or
 a"b" = {ab, aabb, aaabbb, Regular Grammar) can be built
aaaabbbb, ... } n>1 for this set

* is not a regular language

* Informally, let’s think about a
FSA implementation ...

1. We only have a finite number of states to play with ...
2. We're only allowed simple free iteration (looping)

Beyond Regular Languages

| [:
b

Having a frequency table recording the
number of visits is not permitted. y

Not allowed:
%freq = O,

e L=a*b*

. $freq{$state}++;

A Formal Tool: The Pumping Lemma

[See also discussion in JM 16.2.1, pages 533-534]

» Let L be a regular language,

» then there exists a number p >0
* where p is a pumping length (sometimes called a magic number)

such that every string w in L with Iwl = p can be written in the following form
w = Xyz
* with strings x, y and z such that Ixyl = p, lyl >0 and
xy'zisinlL
- for every integer i = 0.

BTW: there is also a pumping lemma for Context-Free Languages

A Formal Tool: The Pumping Lemma

Restated:
 For every (sufficiently long) string w in a regular language

* there is always a way to split the string into three adjacent sections,

call them x, y and z, (y nonempty), i.e. w is x followed by y followed by
4

 And y can be repeated as many times as we like (or omitted)
* And the modified string is still a member of the language

Essential Point!

To prove a language is non-regular: show that no matter how we split the string,
there will be modified strings that can't be in the language.

A Formal Tool: The Pumping Lemma

* Example:
* show that a"b" is not regular

* Proof (by contradiction):
* pick a sufficiently long string in the language
e.g. a..aab..bb (#a's = #b’s)
Partition it according to w = xyz
then showxy’zis notin L
i.e. string does not pump

A Formal Tool: The Pumping Lemma

aaaa. .aabbbb. .bb
o)) am)

Case 1: w = xyz, y straddles the ab boundary
what happens when we pump y?

Case 2: w = xyz, y is wholly within the a’s
what happens when we pump y?

Case 3: w = xyz, y is wholly within the b’s
what happens when we pump y?

A Formal Tool: The Pumping Lemma

* Prime number testing
prime number testing using Perl’s extended “regular expressions”
e Using unary notation, e.g. 5=11111"
o /M11+?)\1+S/ will match anything that’s greater than 1 that’s not prime

L={1" | nis prime}is not a regular language

A Formal Tool: The Pumping Lemma

17 = 111..1111..11111 such that n is a prime number
O G
For any split of the string i.e., we can show any prime
Pump y such that i = length(x+z), giving y' number can be pumped into
a non-prime ...

What is the length of string w=xy'z now?

In x y** z, how many copies of xz do we have?
Answer is y+1
i.e. pumped number can be factorized into (1+|y|)|xz]|

The resulting length is non-prime since it can be factorized

A Formal Tool: The Pumping Lemma

1 = 111..1111..11111 such that n is a prime number
X<

e |llustration of the calculation:

11111111 111 (eleven)

111111111111 1111111171111 1111 1111 111
4+4*7 +3

= 5*7

which isn't prime

* Another look:

11111111111 (re-arrange eleven)

1111111 111111111211111211111111112111 111 (make 4 bundles of 4; 4 bundles of 3)

A Formal Tool: The Pumping Lemma

* Another angle to reduce the mystery, let's think in
terms of FSA. We know:

1. we can't control the loops
2. we are restricted to a finite number of states

3. assume (without loss of generality) there are no e-
transitions

* Suppose there are a total of p states in the machine
* Supose we have a string in the language longer than p

3 .
* What can we conclude? [apcwer: we must have visited

some state(s) more than once!
Also: there must be a loop (or loops)

in the machine! Also: we can repeat or skip that loop
and stay inside the language!

