LING/C SC/PSYC 438/538

Lecture 22
Sandiway Fong

Today's Topics

- Homework 11 Review
- Beyond regular languages:

1. $\left\{a^{n} b^{n} \mid n \geq 1\right\}$, and
2. $\left\{1^{n} \mid n\right.$ is prime $\}$

- A formal tool: the Pumping Lemma

Homework 11 Review

- Q1: $L_{R}=\left\{w^{R} \mid w \in L\right\}$

Homework 11 Review

- Q2: convert $L_{R}=\left\{w^{R} \mid w \in L\right\}$ to a DFSA

Homework 11 Review

- Q3: $\mathrm{L}_{\mathrm{RR}}=\left\{w^{\mathrm{R}} \mid w \in \mathrm{~L}_{\mathrm{R}}\right\}$

Homework 11 Review

- $\mathrm{Q} 4: \mathrm{L}_{\mathrm{RR}}=\left\{w^{\mathrm{R}} \mid w \in \mathrm{~L}_{\mathrm{R}}\right\}$ determinized

State Minimization

- Do you think you could build a machine for L (= LRR) with fewer states? NOPE
- Brzozowski, J.A. Canonical regular expressions and minimal state graphs ford efinite events. In Proc. Sympos. Math. Theory of Automata (New York, 1962), pages 529-561. Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y., 1963.

Beyond Regular Languages

- Beyond regular languages
- $a^{n} b^{n}=\{a b, a a b b, a a b b b$, aaaabbbb, ... $\} n \geq 1$
- is not a regular language
- That means no FSA, regex (or Regular Grammar) can be built for this set
- Informally, let's think about a FSA implementation ...

1. We only have a finite number of states to play with ...
2. We're only allowed simple free iteration (looping)

Beyond Regular Languages

- $\mathrm{L}=\mathrm{a}^{+} \mathrm{b}^{+}$

A Formal Tool: The Pumping Lemma

[See also discussion in JM 16.2.1, pages 533-534]

- Let L be a regular language,
- then there exists a number $p>0$
- where p is a pumping length (sometimes called a magic number)
such that every string w in L with $|w| \geq p$ can be written in the following form $\boldsymbol{w}=x y z$
- with strings x, y and z such that $|x y| \leq p,|y|>0$ and
$x y^{i} z$ is in L
- for every integer $i \geq 0$.

A Formal Tool: The Pumping Lemma

Restated:

- For every (sufficiently long) string w in a regular language
- there is always a way to split the string into three adjacent sections, call them x, y and z , (y nonempty), i.e. w is x followed by y followed by z
- And y can be repeated as many times as we like (or omitted)
- And the modified string is still a member of the language

Essential Point!

To prove a language is non-regular: show that no matter how we split the string, there will be modified strings that can't be in the language.

A Formal Tool: The Pumping Lemma

- Example:
- show that $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$ is not regular
- Proof (by contradiction):
- pick a sufficiently long string in the language
- e.g. a..aab..bb (\#a's = \#b's)
- Partition it according to $\boldsymbol{w}=\boldsymbol{x y z}$
- then show $\boldsymbol{x y}{ }^{i} \boldsymbol{z}$ is not in L
- i.e. string does not pump

A Formal Tool: The Pumping Lemma

aaaa. .aabbbb. .bb

Case 1: $w=x y z, y$ straddles the $a b$ boundary what happens when we pump y?

Case 2: $w=x y z, y$ is wholly within the a's what happens when we pump y?

Case 3: $\boldsymbol{w}=\boldsymbol{x y z}, \boldsymbol{y}$ is wholly within the \boldsymbol{b} 's what happens when we pump y?

A Formal Tool: The Pumping Lemma

- Prime number testing prime number testing using Perl's extended "regular expressions"
- Using unary notation, e.g. $5=$ " 11111 "
- /^(11+?) $1+\$ /$ will match anything that's greater than 1 that's not prime

$$
L=\left\{1^{n} \mid n \text { is prime }\right\} \text { is not a regular language }
$$

A Formal Tool: The Pumping Lemma

$$
1^{n}=111 . .1111 . .11111 \quad \text { such that } n \text { is a prime number }
$$

```
For any split of the string
Pump y such that i= length (x+z), giving y
What is the length of string w=x\mp@subsup{y}{}{\prime}z now?
In xyxz z, how many copies of xz do we have?
Answer is y+1
i.e. pumped number can be factorized into (1+|y|)|xz|
```

i.e., we can show any prime number can be pumped into a non-prime ...

The resulting length is non-prime since it can be factorized

A Formal Tool: The Pumping Lemma

```
1n}=111..1111..11111 such that n is a prime number
```

- Illustration of the calculation:
11111111111 (eleven)

11111111111111111111111111111111111
$4+4 * 7+3$
$=5 * 7$
which isn't prime

- Another look:

11111111111 (re-arrange eleven)
11111111111111111111111111111111111 (make 4 bundles of 4; 4 bundles of 3)

A Formal Tool: The Pumping Lemma

- Another angle to reduce the mystery, let's think in terms of FSA. We know:

1. we can't control the loops
2. we are restricted to a finite number of states
3. assume (without loss of generality) there are no etransitions

- Suppose there are a total of p states in the machine
- Supose we have a string in the language longer than p
- What can we conclude? Answer: we must have visited some state(s) more than once!
Also: there must be a loop (or loops)
in the machine!
Also: we can repeat or skip that loop and stay inside the language!

