LING/C SC/PSYC 438/538

Lecture 22

Sandiway Fong

Today's Topics

- Homework 11 Review
- Beyond regular languages:
 - 1. $\{a^{n}b^{n} \mid n \ge 1\}$, and
 - 2. $\{1^n | n \text{ is prime}\}$
- A formal tool: the Pumping Lemma

Homework 11 Review

• Q1: $L_R = \{w^R | w \in L\}$

Homework 11 Review

• Q2: convert $L_R = \{w^R | w \in L\}$ to a DFSA

Homework 11 Review

• Q3: $L_{RR} = \{w^R | w \in L_R\}$

State Minimization

- Do you think you could build a machine for L (= L^{RR}) with fewer states? NOPE
 - Brzozowski, J.A. Canonical regular expressions and minimal state graphs ford efinite events. In *Proc. Sympos. Math. Theory of Automata (New York, 1962),* pages 529–561. Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y., 1963.

Beyond Regular Languages

- Beyond regular languages
 - aⁿbⁿ = {ab, aabb, aaabbb, aaaabbbb, ... } n≥1
 - is not a regular language

- That means no FSA, regex (or Regular Grammar) can be built for this set
- Informally, let's think about a FSA implementation ...

We only have a finite number of states to play with ...
We're only allowed simple free iteration (looping)

Beyond Regular Languages

[See also discussion in JM 16.2.1, pages 533–534]

- Let *L* be a regular language,
- then there exists a number p > 0
 - where *p* is a pumping length (*sometimes called a magic number*)

such that every string w in L with $|w| \ge p$ can be written in the following form

w = xyz

- with strings x, y and z such that $|xy| \le p$, |y| > 0 and $xy^i z$ is in L
- for every integer $i \ge 0$.

BTW: there is also a pumping lemma for Context-Free Languages

Restated:

- For every (*sufficiently long*) string w in a regular language
- there is always a way to split the string into three adjacent sections, call them x, y and z, (y nonempty), i.e. w is x followed by y followed by z
- And y can be repeated as many times as we like (or omitted)
- And the modified string is still a member of the language

Essential Point!

To prove a language is non-regular: show that no matter how we split the string, there will be modified strings that can't be in the language.

- Example:
 - show that aⁿbⁿ is not regular
- Proof (by contradiction):
 - pick a sufficiently long string in the language
 - e.g. a..aab..bb (#a's = #b's)
 - Partition it according to **w** = **xyz**
 - then show **xy** ⁱ **z** is **not** in L
 - i.e. string does not pump

aaaa..aabbbb..bb

 $\langle \mathbf{y} \rangle \langle \mathbf{y} \rangle \langle \mathbf{y} \rangle$

Case 1: w = xyz, y straddles the ab boundary what happens when we pump y?

Case 2: w = xyz, y is wholly within the a's what happens when we pump y?

Case 3: w = xyz, y is wholly within the b's what happens when we pump y?

• Prime number testing

prime number testing using Perl's extended "regular expressions"

- Using unary notation, e.g. 5 = "11111"
- /^(11+?)\1+\$/ will match anything that's greater than 1 that's not prime

 $L = \{1^n | n \text{ is prime}\}$ is not a regular language

 $1^n = 111..1111..11111$

For any split of the string Pump y such that i = length(x+z), giving yⁱ

What is the length of string w=xyⁱz now?

In x y^{xz} z , how many copies of xz do we have? Answer is y+1 i.e. pumped number can be factorized into (1+|y|)|xz| i.e., we can show any prime number can be pumped into a non-prime ...

The resulting length is non-prime since it can be factorized

 $1^{n} = 111..1111..11111$

such that *n* is a prime number

- Another angle to reduce the mystery, let's think in terms of FSA. We know:
 - 1. we can't control the loops
 - 2. we are restricted to a finite number of states
 - 3. assume (without loss of generality) there are no etransitions
- Suppose there are a total of p states in the machine
- Supose we have a string in the language longer than p

•	What can we conclude?	Answer: we must have visited]
		some state(s) more than once!	

Also: there must be a loop (or loops)

in the machine!	Also: we can repeat or skip that loop
	and stay inside the language!