LING/C SC/PSYC 438/538

Lecture 20
Sandiway Fong

Internships and Career Services Presentation

- Next Tuesday, a departure from our usual topics:
- Guest lecture by Dr. Shawn E. Nordell
- Associate Director of Graduate Career Services, U of A.
- Resources for jobs, resumes and internships
- Q\&A

Today's Topics

- Regex (mathematical) \& FSA are equivalent.
- Example:
- a machine is (perhaps) easier to build than a regex.
- The state bypass method:
- converting a FSA into a regex algorithmically
- Homework 11

FSA and regex

- Textbook Exercise: find a regex for

```
4. the set of all strings from the alphabet }a,b\mathrm{ such that each }a\mathrm{ is immediately
    preceded by and immediately followed by a }b\mathrm{ ;
Examples (* denotes string not in the language):
    *ab *ba
    bab
    \lambda(empty string)
    bb
    *baba
    babab
```


FSA and regex

- Draw a FSA and convert it to a regex:

[Powerpoint
Animation]

$$
\begin{aligned}
& b^{*} \quad b \quad(a b+)+ \\
& =b+(a b+)^{*} \mid \varepsilon
\end{aligned}
$$

Regex from FSA

1. accept
2. ab reject
3. ba reject
4. bab accept
5. bb accept
6. baba reject
7. babab accept

Regex from FSA

- Any regex can be re-drawn as a FSA.
- Formally, we can also convert any FSA to a regex
- But there isn't necessarily just one solution

Regex from FSA

- Example:
- Give a regex for the NDFSA:

- State by-pass method:

1. Delete one state at a time
2. Calculate the possible paths passing through the deleted state
3. Add the regex calculated at each stage as an arc

- e.g.
- eliminate state 3
- then 2...

Regex from FSA

- eliminate state 3

- eliminate state 2

Answer: $\left(0\left(1^{+} 0 \mid 1\right)^{*} 1^{+1} \mid 1\right)^{*}$
[Powerpoint animation]

Another way: Regex from FSA

The example from two slides ago ...

- BUT:
- let's do it in a different order, so:
- step 1: eliminate state 2
- step 2: eliminate state 3

Homework 11

- Let's start with Homework 10
- Recall Q4: let L be the language accepted by either:

Homework 11

- Question 1:
- $L_{R}=\left\{w^{R} \mid w \in L\right\}, w$ a string of L, w^{R} the reverse of w.
- Example: abaa $\in L$, aaba $\in L^{R}$
- Give a FSA for L_{R}
- Recall: basic idea swap final/beginning states
- Check your answer!
- By software or legible hand-drawn diagrams accepted

Homework 11

- Question 2:
- convert $L_{R}=\left\{w^{R} \mid w \in L\right\}$ to a DFSA
- use the construction described in class
- make sure you label your states with sets
- How many states does the DFSA have?
- How many end states?
- Check your answer!
- By software or legible hand-drawn diagrams accepted

Homework 11

- Question 3:
- consider $L_{R R}=\left\{w^{R} \mid w \in L_{R}\right\}, L_{R}$ being the language in Question 2.
- construct the machine for $L_{R R}$ from the machine of L_{R} in Question 2.
- use the method of Question 1
- Check your answer!
- By software or legible hand-drawn diagrams accepted
- Compare the machine you obtain here with the original machine for L.
- What is the difference?

Homework 11

- Question 4:
- convert $L_{R R}=\left\{w^{R} \mid w \in L_{R}\right\}$ to a DFSA
- use the construction described in class
- make sure you label your states with sets (of sets)
- Check your answer!
- By software or legible hand-drawn diagrams accepted
- Compare the machine you obtain here with the (answer) machine obtained for L in Homework 10.
- What do you notice/what is the difference?

Homework 11

- Email: to sandiway@arizona.edu
- Subject: 438/538 Homework 11 YOUR NAME
- Due date (special circumstances due to guest lecture):
- next Tuesday night!
- will be reviewed next Thursday
- One PDF file please
- paste your machine (drawings) into the file

