LING/C SC/PSYC 438/538

Lecture 20

Sandiway Fong

Internships and Career Services Presentation

- Next Tuesday, a departure from our usual topics:
 - Guest lecture by Dr. Shawn E. Nordell
 - Associate Director of Graduate Career Services, U of A.
 - Resources for jobs, resumes and internships
 - Q&A

Today's Topics

- Regex (mathematical) & FSA are equivalent.
- Example:
 - a machine is (*perhaps*) easier to build than a regex.
- The state bypass method:
 - converting a FSA into a regex algorithmically
- Homework 11

FSA and regex

• Textbook Exercise: find a regex for

 the set of all strings from the alphabet a, b such that each a is immediately preceded by and immediately followed by a b;

```
Examples (* denotes string not in the language):
    *ab *ba
    bab
    λ (empty string)
    bb
    *baba
    baba
```

FSA and regex

• Draw a FSA and convert it to a regex:

= b+(ab+)* | ε

Regex from FSA

- \$ perl -le 'for (@ARGV) {if (/^(b+(ab+)*|)\$/) {print
 "\$_accept"} else {print "\$_ reject"}}' ab ba bab
 bb baba babab
 - 1. accept
 - 2. ab reject
 - 3. ba reject
 - 4. bab accept
 - 5. bb accept
 - 6. baba reject
 - 7. babab accept

Regex from FSA

- Any regex can be re-drawn as a FSA.
- Formally, we can also convert any FSA to a regex
 - But there isn't necessarily just one solution

Regex from FSA

- Example:
 - Give a regex for the NDFSA:

- State by-pass method:
 - 1. Delete one state at a time
 - Calculate the possible paths passing through the deleted state
 - 3. Add the regex calculated at each stage as an arc
 - e.g.
 - eliminate state 3
 - then 2...

Another way: Regex from FSA

The example from two slides ago ...

- BUT:
 - let's do it in a different order, so:
 - step 1: eliminate state 2
 - step 2: eliminate state 3

- Let's start with Homework 10
- Recall Q4: let L be the language accepted by either:

- Question 1:
 - $L_R = \{w^R | w \in L\}$, w a string of L, w^R the reverse of w.
 - Example: abaa $\in L$, aaba $\in L^R$
 - Give a FSA for L_R
 - Recall: basic idea swap final/beginning states
 - Check your answer!
 - By software or legible hand-drawn diagrams accepted

- Question 2:
 - convert $L_R = \{w^R | w \in L\}$ to a DFSA
 - use the construction described in class
 - make sure you label your states with sets
 - How many states does the DFSA have?
 - How many end states?
 - Check your answer!
 - By software or legible hand-drawn diagrams accepted

- Question 3:
 - consider $L_{RR} = \{w^R | w \in L_R\}$, L_R being the language in Question 2.
 - construct the machine for L_{RR} from the machine of L_{R} in Question 2.
 - use the method of Question 1
 - Check your answer!
 - By software or legible hand-drawn diagrams accepted
 - Compare the machine you obtain here with the original machine for L.
 - What is the difference?

- Question 4:
 - convert $L_{RR} = \{w^R | w \in L_R\}$ to a DFSA
 - use the construction described in class
 - make sure you label your states with sets (of sets)
 - Check your answer!
 - By software or legible hand-drawn diagrams accepted
 - Compare the machine you obtain here with the (answer) machine obtained for L in Homework 10.
 - What do you notice/what is the difference?

- Email: to sandiway@arizona.edu
- Subject: 438/538 Homework 11 YOUR NAME
- Due date (*special circumstances due to guest lecture*):
 - next Tuesday night!
 - will be reviewed next Thursday
- One PDF file please
 - paste your machine (drawings) into the file