LING/C SC/PSYC 438/538

Lecture 19
Sandiway Fong

Today's Topics

e Homework 10 Review

* Some regular language properties

* Turing Machines
* g brief digression — similar to FSA but with a tape (for storage)

Homework 10 Review

* Consider the following NDFSA: ¢ Q1: Why is it a NDFSA?
 state y has two arcs for b
 state y has two arcs for a

* Q2: What is the shortest nonempty
string it does not accept?
¢ 4d

Homework 10 Review

coodNO UL WN -

9

. aaab
. aabb
. abbb
. abab
. abaa
. bbbb
. bbab
. bbaa

baab

10.babb

11.baba

* Q3: Which strin
4 does it accept

%s of length

* How many are there?

e 11 out of 16

* doesn't accept:

LnhwheE

aaaa
aaba
abba
bbba
baaa

Homework 10 Review

* Q4: Convert our NDFSA into a
DFSA

* using the construction shown
previously in class

* How many states does the DFSA
have? 6

* How many final states? 4

Regular Languages and FSA

» Recall languages are sets of strings.

° Regular |anguages: 1. ©is aregular language
2. YaeZUe, {a}isaregular language
3

. If L; and L, are regular languages, then so are:
(a) Ly - Ly ={xy|x € L.y € L}, the concatenation of Lyand L;

(b) Ly ULy, the union or disjunction of L and L>
(c) Li. the Kleene closure of L,

* Correspondence between Regular Languages and regex devices:
* concatenation (juxtaposition)
* union (I also [1)
« Kleene closure (*) Note: x* = xx*)

* Note:

backreferences are memory devices and thus are too powerful
e.g. L = {ww} and prime number testing (see earlier lectures)

Regular Languages and FSA

* Closure properties:
* i.e. do we still have a reqular language after applying the operation?

intersection if Ly and L, are regular languages, then so is Ly M L,, the
language consisting of the set of strings that are in both L,
and Lz.

difference if L; and L, are regular languages, then sois L; — L. the
language consisting of the set of strings that are in L; but
not L,.

complementation If L, is a regular language, then so is ' — L, the set of all
possible strings that aren’tin L.

reversal If L; is a regular language, then so is L’f. the language
consisting of the set of reversals of all the strings in L.

* Closure properties not necessarily preserved higher up, e.g. context-free languages

Regular Languages and FSA

Textbook gives one direction only

* there are three cases: == =
. ©1s aregular language

a) Empty String 2. Yae ZUe, {a}isaregular language
b) Empty set

c) Any character from the alphabet

- 7 " @
@ R @’ & ("") &)

(a) r=e (b) =2 (c)r=a

1ot o] Automata for the base case (no operators) for the induction showing that any
reeular expression can be turned into an equivalent automaton.

Regular Languages and FSA

 Concatenation:

3. If L; and L, are regular languages, then so are:

(a) Ly - Ly ={xy|x € L1,y € L}, the concatenation of Ljand L,
(b) Ly ULy, the union or disjunction of Ly andL;
(¢c) L7, the Kleene closure of L,

* Link final state of FSA; to initial state of FSA, using an empty transition

i N el S
I' C Q;_/'Q e ST J" |"\ S ~ Tl '[
.ﬂ'\ Eon; _ / N FSA, 3

The concatenation of two FSAs.

Note: empty transition € can be deleted using the set of states construction

Regular Languages and FSA

* Kleene closure:

3. If L; and L, are regular languages, then so are:
(a) Ly - Ly ={xy|x € L.y € Ly}, the concatenation of Lyand L,
(b) Ly Ly, the union or disjunction of Ly and L
(c) L}. the Kleene closure of L,

* repetition operator: zero or more times
* use empty transitions for loopback and bypass

-~ - -

The closure (Kleene *) of an FSA.

Regular Languages and FSA

* Union: aka disjunction

3. If L; and L, are regular languages, then so are:

(a) Ly - Ly = {xy|x € L.y € Lz}, the concatenation of Lyand L>
(b) L; ULy, the union or disjunction of L; and L
(¢c) L. the Kleene closure of L,

* Non-deterministically run both FSAs at the same time, accept if either one accepts

& \"
I/. "‘I.
(' - \\z‘ . ".
€. L ‘\ -» _ " j‘\\f
O ° \ “"’ L :
i e FSA, / N
s I'I' o /’O\t)O\'\ I."‘ _- ST
‘J“ ‘@2 >O) el
.I\\ © FSA, _, /-’"

10711 P A] The union (|) of two FSAs.

Regular Languages and FSA

* Other closure properties:

intersection if L; and L, are regular languages, then so is L M L,, the
language consisting of the set of strings that are in both L;
and Lz.

difference if L, and L, are regular languages, then sois L; — L, the
language consisting of the set of strings that are in L; but
not L.

complementation If L; is aregular language, then so is T* — L, the set of all
possible strings that aren’tin L;.

reversal If L; 1s a regular language, then so is L’f, the language
consisting of the set of reversals of all the strings in L,.

Let’s consider building the FSA machinery for each of these guys in turn...

Regular Languages and FSA

e Other closure properties:

intersection if L; and L, are regular languages, then so is L, M L,, the

language consisting of the set of strings that are in both L,
and L,.

e What would be the final state?

Regular Languages and FSA

e Other closure properties:

difference if Ly and L, are regular languages, then sois L; — Ly, the
language consisting of the set of strings that are in L; but
not L.

e What would be the final state?

Regular Languages and FSA

e Other closure properties:

complementation If L, is a regular language, then so is £* — L, the set of all

possible strings that aren’t in L;.

Example: Z ={a,b}; Z* ={a, b}*

 we need explicit arcs for each character in 2
 toa'"dead" state (if necessary)

* then flip accepting and non-accepting states

Regular Languages and FSA

* Other closure properties:
reversal If L, is a regular language, then so is L';". the language
consisting of the set of reversals of all the strings in L;.

reverse arrows and swap initial/final

Turing Machine

™ = (QI ZI Qo 6) + tape
Q, X finite. .. & finite.

(partial) transition function 6:
* QxXI->Qx2xd d = [LRN]
* {(q9,0,q',0',d)
* Memory:
* one-way infinite tape
* initially: > input ..., head at start of input

» [is the end-of-tape symbol (part of)

* how to signal right end? Suppose 0. 2 = {I>, 0} +
new symbols (minimum 1)

* initial values of cells beyond the input =0
* assume cannot fall off the left side

Halt:
* when no matching transition exists

* Encodable as a (finite) sequence of numbers:
* {]Q],Q, |Z],%, 90, 9,0,9,0',d,..)

* Configuration:
» (Tape, position, q)
* initially: (>-input, 1, q)

Model of a basic Turing machine, part of the
Go Ask Alice exhibit at the Harvard Collection
of Historical Scientific Instruments.

Turing Machine

It can be configured as a decider like an ordinary FSA

e Or it can be a transducer (i.e. map input into output strings)
Example

e Successor function:
« 2 ={P>,1,0}, Q={q, q;}, qoinitial state

* recall unary notation (initially, at the leftmost 1): > 1110 ...
* Idea: find 1%t zero, change ittoa 1

¢ (qOI 1I qOI 1; R)
¢ (qOI OI q]_l 1; R)

Turing Machine

e +2 (add 2) function:

« 3 ={>,1,0}, Q={qy q;, 95}, dpinitial state

* unary notation (initially, at the leftmost 1): > 1110 ...
* |dea: find 2 zeros, change them to 1's

¢ (qOI 1' qOI 11 R)

¢ (qOI 0, qll 11 R)

¢ (qll 0, qZI 11 R)

Turing Machine

Example:

* doubler

-

© 0 NOUAWN

> 111D (start)

[>211D (change 1to 2, move R)
> 221D (change 1to 2, move R)
> 222D (change 1to 2, move R)
>222D (movelLatD>)

[>221D (change 2 to 1, move R)
[>2211D (change > to 1, move L)
>2211D (skipL1's)

[>2111D (change 2 to 1, move R)

10.
11.
12.
13.
14.
15.
16.
17.

>2111D (skipRL's)

>21111D (change D> to 1, move L)
>21111D (skipL1's)

>11111D (change2to 1, moveR)
>11111D (skipRL's)
>111111D (change D> to 1, movel)
>111111D (skipL1's)

halt

Turing Machine

initially: change all 1's to 2's move L all the way, until you see a 2 or >
. 1,2,R 1,1,L
MaChlne: end? move L
>, >,R
* has 4 states: {0, 1, 2, 3} >, P,L s .
e > = {1’ 2’ D}
* q0=0 change2to 1 >,1,L
A
= \
Tf=3 \ end? D> changeto 1
* deterministic \\ /
* transition function \\ - -
e each arc at states \\ 1,1,R mo%ﬁ e way
labeled \\ until en

* sym,sym',Move
« sym € %, Move € {L,R}

doubles!

