
LING/C SC/PSYC 438/538
Lecture 19

Sandiway Fong

Today's Topics

• Homework 10 Review
• Some regular language properties
• Turing Machines
• a brief digression – similar to FSA but with a tape (for storage)

Homework 10 Review

• Consider the following NDFSA: • Q1: Why is it a NDFSA?
• state y has two arcs for b
• state y has two arcs for a

• Q2: What is the shortest nonempty
string it does not accept?
• a

x

y

z

a

> b
b

a
b

a

b

a

Σ = {a, b}

Homework 10 Review

1. aaab
2. aabb
3. abbb
4. abab
5. abaa
6. bbbb
7. bbab
8. bbaa
9. baab
10.babb
11.baba

• Q3: Which strings of length
4 does it accept?
• How many are there?
• 11 out of 16
• doesn't accept:
1. aaaa
2. aaba
3. abba
4. bbba
5. baaa

Homework 10 Review

• Q4: Convert our NDFSA into a
DFSA
• using the construction shown

previously in class
• How many states does the DFSA

have? 6
• How many final states? 4

{x}

{y}

{x,y}

a

> b

b
b

a
{x,z}

a

a

{y,z}

b

{x,y,z}

a

b

a

b

Regular Languages and FSA
• Recall languages are sets of strings.
• Regular languages:

• Correspondence between Regular Languages and regex devices:
• concatenation (juxtaposition)
• union (| also [])
• Kleene closure (*) Note: x+ = xx*)

• Note:
• backreferences are memory devices and thus are too powerful
• e.g. L = {ww} and prime number testing (see earlier lectures)

Regular Languages and FSA

• Closure properties:
• i.e. do we still have a regular language after applying the operation?

• Closure properties not necessarily preserved higher up, e.g. context-free languages

Regular Languages and FSA

Textbook gives one direction only
• there are three cases:

a) Empty string
b) Empty set
c) Any character from the alphabet

Regular Languages and FSA

• Concatenation:

• Link final state of FSA1 to initial state of FSA2 using an empty transition

Note: empty transition ε can be deleted using the set of states construction

Regular Languages and FSA

• Kleene closure:

• repetition operator: zero or more times
• use empty transitions for loopback and bypass

Regular Languages and FSA
• Union: aka disjunction

• Non-deterministically run both FSAs at the same time, accept if either one accepts

Regular Languages and FSA

• Other closure properties:

Let’s consider building the FSA machinery for each of these guys in turn…

Regular Languages and FSA

• Other closure properties:

• What would be the final state?

Regular Languages and FSA

• Other closure properties:

• What would be the final state?

Regular Languages and FSA

• Other closure properties:

Example: Σ = {a,b}; Σ* = {a, b}*
• we need explicit arcs for each character in Σ
• to a "dead" state (if necessary)

• then flip accepting and non-accepting states

Regular Languages and FSA

• Other closure properties:

reverse arrows and swap initial/final

Turing Machine

• TM = (Q, Σ, q0, δ) + tape
• Q, Σ finite. ∴ δ finite.
• (partial) transition function δ:

• Q x Σ -> Q x Σ x d d = [LRN]
• ⟨q, σ, q', σ', d⟩

• Memory:
• one-way infinite tape
• initially: ▷ input …, head at start of input
• ▷ is the end-of-tape symbol (part of Σ)
• how to signal right end? Suppose 0. Σ = {▷, 0} +

new symbols (minimum 1)
• initial values of cells beyond the input = 0
• assume cannot fall off the left side

• Halt:
• when no matching transition exists

• Encodable as a (finite) sequence of numbers:
• ⟨|Q|, Q, |Σ|, Σ, q0, q, σ, q', σ', d,… ⟩

• Configuration:
• ⟨Tape, position, q⟩
• initially: ⟨ ▷·input, 1, q⟩

FSA +

Model of a basic Turing machine, part of the
Go Ask Alice exhibit at the Harvard Collection
of Historical Scientific Instruments.

Turing Machine

It can be configured as a decider like an ordinary FSA
• Or it can be a transducer (i.e. map input into output strings)
Example
• Successor function:

• Σ = {▷,1,0}, Q = {q0, q1}, q0 initial state
• recall unary notation (initially, at the leftmost 1): ▷ 1 1 1 0 …
• Idea: find 1st zero, change it to a 1
• ⟨q0, 1, q0, 1, R⟩
• ⟨q0, 0, q1, 1, R⟩

Turing Machine

• +2 (add 2) function:
• Σ = {▷,1,0}, Q = {q0, q1 , q2}, q0 initial state
• unary notation (initially, at the leftmost 1): ▷ 1 1 1 0 …
• Idea: find 2 zeros, change them to 1's
• ⟨q0, 1, q0, 1, R⟩
• ⟨q0, 0, q1, 1, R⟩
• ⟨q1, 0, q2, 1, R⟩

Turing Machine

Example:
• doubler

1. ▷ 1 1 1 ▷ (start)
2. ▷ 2 1 1 ▷ (change 1 to 2, move R)
3. ▷ 2 2 1 ▷ (change 1 to 2, move R)
4. ▷ 2 2 2 ▷ (change 1 to 2, move R)
5. ▷ 2 2 2 ▷ (move L at ▷)
6. ▷ 2 2 1 ▷ (change 2 to 1, move R)
7. ▷ 2 2 1 1 ▷ (change ▷ to 1, move L)
8. ▷ 2 2 1 1 ▷ (skip L 1's)
9. ▷ 2 1 1 1 ▷ (change 2 to 1, move R)

10. ▷ 2 1 1 1 ▷ (skip R L's)
11. ▷ 2 1 1 1 1 ▷ (change ▷ to 1, move L)
12. ▷ 2 1 1 1 1 ▷ (skip L 1's)
13. ▷ 1 1 1 1 1 ▷ (change 2 to 1, move R)
14. ▷ 1 1 1 1 1 ▷ (skip R L's)
15. ▷ 1 1 1 1 1 1 ▷ (change ▷ to 1, move L)
16. ▷ 1 1 1 1 1 1 ▷ (skip L 1's)
17. halt

Turing Machine

Machine:
• has 4 states: {0, 1, 2, 3}
• Σ = {1, 2, ▷}
• q0 = 0
• f = 3
• deterministic

• transition function
• each arc at states

labeled
• sym,sym',Move
• sym ∈ Σ, Move ∈ {L,R}

0 1 3

2

1,2,R

> ▷, ▷,L

2,1,R

1,1,L

▷,1,L

▷, ▷,R

1,1,R

initially: change all 1's to 2's

end? move L

change 2 to 1

move R all the way
until end

end? ▷ change to 1

move L all the way, until you see a 2 or ▷

doubles!

