LING/C SC/PSYC 438/538

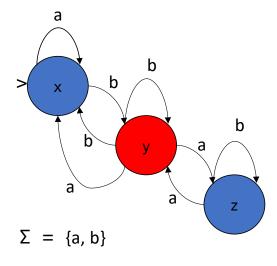
Lecture 19 Sandiway Fong

Today's Topics

- Homework 10 Review
- Some regular language properties
- Turing Machines
 - a brief digression similar to FSA but with a tape (for storage)

Homework 10 Review

• Consider the following NDFSA: • Q1: Why is it a NDFSA?



- - state y has two arcs for b
 - state **y** has two arcs for **a**
- Q2: What is the shortest nonempty string it does not accept?

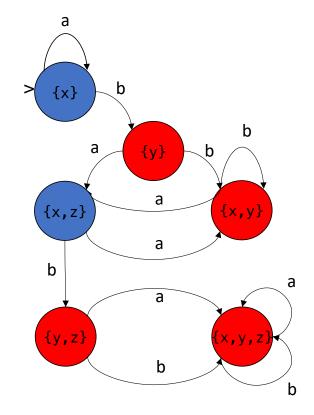
Homework 10 Review

- 1. aaab
- 2. aabb
- 3. abbb
- 4. abab
- 5. abaa
- 6. bbbb
- 7. bbab
- 8. bbaa
- 9. baab
- 10.babb
- 11.baba

- Q3: Which strings of length 4 does it accept?
- How many are there?
 - 11 out of 16
 - doesn't accept:
 - 1. aaaa
 - 2. aaba
 - 3. abba
 - 4. bbba
 - 5. baaa

Homework 10 Review

- Q4: Convert our NDFSA into a DFSA
 - using the construction shown previously in class
 - How many states does the DFSA have? 6
 - How many final states? 4



- Recall languages are sets of strings.
- Regular languages:

```
1. Ø is a regular language
```

- 2. $\forall a \in \Sigma \cup \epsilon$, $\{a\}$ is a regular language
- 3. If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$, the concatenation of L_1 and L_2
- (b) $L_1 \cup L_2$, the union or disjunction of L_1 and L_2
 - (c) L₁*, the Kleene closure of L₁
- Correspondence between Regular Languages and regex devices:
 - concatenation

(juxtaposition)

union

(| also [])

Kleene closure

(*) Note: $x^+ = xx^*$)

- Note:
 - backreferences are memory devices and thus are too powerful
 - e.g. L = {ww} and prime number testing (see earlier lectures)

Closure properties:

• i.e. do we still have a regular language after applying the operation?

intersection	if L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$, the language consisting of the set of strings that are in both L_1 and L_2 .
difference	if L_1 and L_2 are regular languages, then so is $L_1 - L_2$, the language consisting of the set of strings that are in L_1 but not L_2 .
complementation	If L_1 is a regular language, then so is $\Sigma^* - L_1$, the set of all possible strings that aren't in L_1 .
reversal	If L_1 is a regular language, then so is L_1^R , the language consisting of the set of reversals of all the strings in L_1 .

Closure properties not necessarily preserved higher up, e.g. context-free languages

Textbook gives one direction only

- there are three cases:
 - a) Empty string
 - b) Empty set
 - c) Any character from the alphabet

- 1. Ø is a regular language
- 2. $\forall a \in \Sigma \cup \epsilon$, $\{a\}$ is a regular language

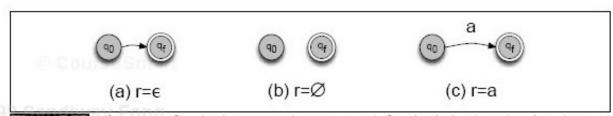


Figure 2.22 Automata for the base case (no operators) for the induction showing that any regular expression can be turned into an equivalent automaton.

• Concatenation:

- 3. If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$, the concatenation of L_1 and L_2
- (b) $L_1 \cup L_2$, the union or disjunction of L_1 and L_2
 - (c) L_1^* , the Kleene closure of L_1
- Link final state of FSA₁ to initial state of FSA₂ using an empty transition

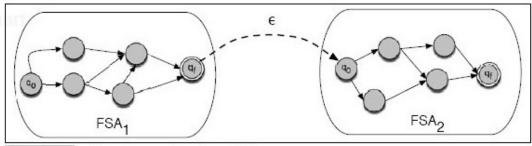


Figure 2.23 The concatenation of two FSAs.

Note: empty transition ε can be deleted using the set of states construction

• Kleene closure:

- 3. If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$, the concatenation of L_1 and L_2
 - (b) $L_1 \cup L_2$, the union or disjunction of L_1 and L_2
 - (c) L_1^* , the Kleene closure of L_1
- repetition operator: zero or more times
- use empty transitions for loopback and bypass

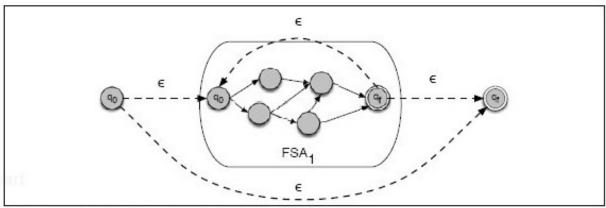


Figure 2.24 The closure (Kleene *) of an FSA.

• Union: aka disjunction

- 3. If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$, the concatenation of L_1 and L_2
- (b) $L_1 \cup L_2$, the union or disjunction of L_1 and L_2
 - (c) L_1^* , the Kleene closure of L_1
- Non-deterministically run both FSAs at the same time, accept if either one accepts

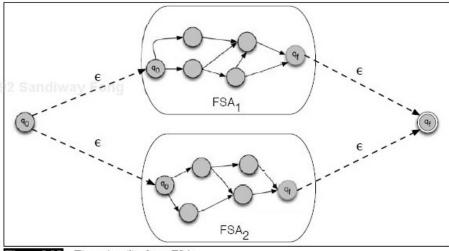


Figure 2.25 The union (|) of two FSAs.

• Other closure properties:

intersection	if L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$, the language consisting of the set of strings that are in both L_1 and L_2 .
difference	if L_1 and L_2 are regular languages, then so is $L_1 - L_2$, the language consisting of the set of strings that are in L_1 but not L_2 .
complementation	If L_1 is a regular language, then so is $\Sigma^* - L_1$, the set of all possible strings that aren't in L_1 .
reversal	If L_1 is a regular language, then so is L_1^R , the language consisting of the set of reversals of all the strings in L_1 .

Let's consider building the FSA machinery for each of these guys in turn...

• Other closure properties:

intersection	if L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$, the
	language consisting of the set of strings that are in both L_1
	and L_2 .

What would be the final state?

• Other closure properties:

difference if L_1 and L_2 are regular languages, then so is $L_1 - L_2$, the language consisting of the set of strings that are in L_1 but not L_2 .

What would be the final state?

Other closure properties:

complementation If L_1 is a regular language, then so is $\Sigma^* - L_1$, the set of all possible strings that aren't in L_1 .

Example: $\Sigma = \{a,b\}; \Sigma^* = \{a,b\}^*$

- we need explicit arcs for each character in Σ
 - to a "dead" state (if necessary)
- then flip accepting and non-accepting states

• Other closure properties:

reversal If L_1 is a regular language, then so is L_1^R , the language consisting of the set of reversals of all the strings in L_1 .

reverse arrows and swap initial/final

- TM = (Q, Σ, q_0, δ) + tape
- Q, Σ finite. \therefore δ finite.
- (partial) transition function δ :
 - $Q \times \Sigma -> Q \times \Sigma \times d$ d = [LRN]
 - (q, σ, q', σ', d)
- Memory:
 - one-way infinite tape
 - initially: *> input ...,* head at start of input
 - \triangleright is the end-of-tape symbol (part of Σ)
 - how to signal right end? Suppose 0. $\Sigma = \{ \triangleright, 0 \} +$ new symbols (minimum 1)
 - initial values of cells beyond the input = 0
 - · assume cannot fall off the left side
- Halt:
 - · when no matching transition exists

- Encodable as a (finite) sequence of numbers:
 - $\langle |Q|, Q, |\Sigma|, \Sigma, q_0, q, \sigma, q', \sigma', d,... \rangle$
- Configuration:
 - (Tape, position, q)
 - initially: ⟨ ▷·input, 1, q⟩

Model of a basic Turing machine, part of the Go Ask Alice exhibit at the Harvard Collection of Historical Scientific Instruments.

It can be configured as a decider like an ordinary FSA

- Or it can be a transducer (i.e. *map input into output strings*) Example
- Successor function:
 - $\Sigma = \{ \triangleright, 1, 0 \}, Q = \{ q_0, q_1 \}, q_0 \text{ initial state }$
 - recall unary notation (initially, at the leftmost 1): \triangleright 1 1 1 0 ...
 - Idea: find 1st zero, change it to a 1
 - $\langle q_0, 1, q_0, 1, R \rangle$
 - $\langle q_0, 0, q_1, 1, R \rangle$

- +2 (add 2) function:
 - $\Sigma = \{ \triangleright, 1, 0 \}$, Q = $\{ q_0, q_1, q_2 \}$, q_0 initial state
 - unary notation (initially, at the leftmost 1): ▷ 1 1 1 0 ...
 - Idea: find 2 zeros, change them to 1's
 - $\langle q_0, 1, q_0, 1, R \rangle$
 - $\langle q_0, 0, q_1, 1, R \rangle$
 - $\langle q_1, 0, q_2, 1, R \rangle$

Example:

doubler

- 1. \triangleright 1 1 1 \triangleright (start)
- 2. \triangleright 2 1 1 \triangleright (change 1 to 2, move R)
- 3. \triangleright 2 2 1 \triangleright (change 1 to 2, move R)
- 4. \triangleright 2 2 2 \triangleright (change 1 to 2, move R)
- 5. \triangleright 2 2 $\stackrel{2}{\triangleright}$ (move L at \triangleright)
- 6. \triangleright 2 2 1 \triangleright (change 2 to 1, move R)
- 7. \triangleright 2 2 1 1 \triangleright (change \triangleright to 1, move L)
- 8. \triangleright 2 2 1 1 \triangleright (skip L 1's)
- 9. \triangleright 2 1 1 1 \triangleright (change 2 to 1, move R)

- 10. \triangleright 2 1 1 1 \triangleright (skip R L's)
- 11. \triangleright 2 1 1 1 \triangleright (change \triangleright to 1, move L)
- 12. \triangleright 2 1 1 1 1 \triangleright (skip L 1's)
- 13. $\triangleright 11111 \triangleright \text{ (change 2 to 1, move R)}$
- 14. \triangleright 1 1 1 1 1 \triangleright (skip R L's)
- 15. \triangleright 1 1 1 1 1 \triangleright (change \triangleright to 1, move L)
- 16. \triangleright 1 1 1 1 1 1 \triangleright (skip L 1's)
- 17. halt

Machine:

- has 4 states: {0, 1, 2, 3}
- $\Sigma = \{1, 2, \triangleright\}$
- $q_0 = 0$
- f = 3
- deterministic
 - transition function
 - each arc at states labeled
 - sym, sym', Move
 - sym $\in \Sigma$, Move $\in \{L,R\}$

