LING/C SC/PSYC 438/538

Lecture 18
Sandiway Fong

Today's Topics

- FSA contd.
- non-determinism
- NDFSA to DFSA conversion
- Homework 10

Non-Deterministic Finite State Automata (NDFSA)

- non-deterministic FSA (NDFSA)
- no restriction on ambiguity (surprisingly, no increase in power)
- Example:

Non-Deterministic Finite State Automata (NDFSA)

```
function ND-RECOGNIZE(tape, machine) returns accept or reject
agenda}\leftarrow{(Initial state of machine, beginning of tape) 
current-search-state}\leftarrow\textrm{NEXT}(\mathrm{ agenda)
loop
    if ACCEPT-STATE?(current-search-state) returns true then
    return accept
    else
    agenda\leftarrowagenda \cup GenERATE-NEw-States(current-search-state)
    if agenda is empty then
    return reject
    else
    current-search-state}\leftarrow\textrm{NEXT}(\mathrm{ agenda)
end
function GenERATE-NEw-STATES(current-state) returns a set of search-states
current-node }\leftarrow\mathrm{ the node the current search-state is in
index}\leftarrow\mathrm{ the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:
    (transition-table [current-node, \epsilon], index)
(transition-table [current-node, tape[index]], index + I)
function ACCEPT-STATE?(search-state) returns true or false
current-node }\leftarrow\mathrm{ the node search-state is in
index}\leftarrow\mathrm{ the point on the tape search-state is looking at
if index is at the end of the tape and current-node is an accept state of machine
    then
    return true
else
return false
Figure 2.19 An algorithm for NFSA recognition. The word node means a state of the FSA,
and state or search-state means "the state of the search process", i.e., a combination of node and
tape position.
```

Possible strategies for keeping track of multiple states:

1. Backtracking (backup)
2. Parallelism (split the computation) algorithm gets complicated fast

Finite State Automata (FSA)

```
function D-RECOGNIZE(tape, machine) returns accept or reject
    index\leftarrowBeginning of tape
    current-state}\leftarrow\mathrm{ Initial state of machine
    loop
    if End of input has been reached then
        if current-state is an accept state then
        return accept
        else
        return reject
    elsif transition-table[current-state,tape[index]] is empty then
        return reject
    else
        current-state \leftarrowtransition-table[curren-state,tape[index]]
        index}\leftarrow\mathrm{ -index + 1
    end
```

Figure 2.12 An algorithm for deterministic recognition of FSAs. This algorithm returns $a c$ cept if the entire string it is pointing at is in the language defined by the FSA, and reject if the string is not in the language.

NDFSA \rightarrow (D)FSA

[discussed at the end of section 2.2 in the textbook]

- construct a new machine
- each state of the new machine represents the set of possible states of the original machine when stepping through the input
- Note:
- new machine is equivalent to old one (but has more states)
- new machine is deterministic
- example

Workde EXERCISE

- Let's check our understanding:
- apply the set-of-states construction technique to the two machines on the ε-transition slide from the previous lecture (repeated below)
- How to check your answer?
- should confirm the machine produced is actually deterministic and accurately simulates its ε-transition counterpart

Homework 10

- Consider the following NDFSA: • Q1: Why is it a NDFSA?

- Q2: What is the shortest nonempty string it does not accept?
- Q3: Which strings of length 4 does it accept? How many are there?
- Q4: Convert our NDFSA into a DFSA. How many states does the DFSA have? How many final states?
- use the construction shown in class

Homework 10

- Extra Credit:
- implement your DFSA in Perl or Python (only)
- Which of the following strings does it accept?

1. aaaabbbbaaa
2. aaaabbbaab
3. aaaabbbbbba
4. aaaabbbaba

Homework 10

- Usual rules ...
- One PDF file
- Subject: 438/538 Homework 10 YOUR NAME
- Due date: Sunday midnight
- You can draw your machine for Q4 by hand (make it legible)
- put in the set of states $\{. .$.
- For the EC question: attach your Perl/Python code.

