
LING/C SC/PSYC 438/538
Lecture 17

Sandiway Fong

Today's Topics

• Regex example:
• xkcd simplewriter

• FSA contd.
• formal definition
• Perl and Python implementations
• e-transitions
• single vs. multiple start states

xkcd:simplewriter
https://xkcd.com/simplewriter/

https://xkcd.com/simplewriter/

xkcd:simplewriter

xkcd:simplewriter

xkcd:simplewriter
• grep -o '|' words.js | wc -l
• 3633 (3634 words)

Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

Conventions (used here):
1. > Indicates start state
2. Red circle indicates end (accepting) state
3. we accept a input string only when we’re in an

end state and we’re at the end of the string

Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

There is a natural correspondence between
components of the FSA and the regex defining L

Note:
L = {a+b+}
L = {aa*bb*}

Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

deterministic FSA (DFSA)
no ambiguity about where to go at any given state
i.e. for each input symbol in the alphabet at any
given state, there is a unique “action” to take.

non-deterministic FSA (NDFSA)
no restriction on ambiguity (surprisingly, no increase in power)

Note: multiple exiting
arrows, i.e. two paths,
but still deterministic!

Finite State Automata (FSA)

• more formally
• (Q,s,f,Σ,d)
1. set of states (Q): {s,x,y} must be a finite set
2. start state (s): s
3. end state(s) (f): y
4. alphabet (Σ): {a, b}
5. transition function d:

signature: character × state → state
• d(a,s)=x
• d(a,x)=x
• d(b,x)=y
• d(b,y)=y

s x

y

a a

b

b

>

Finite State Automata (FSA)

• In Perl
transition function d:

• d(a,s)=x
• d(a,x)=x
• d(b,x)=y
• d(b,y)=y

s x

y

a a

b

b

We can simulate our 2D transition table using a hash table
whose elements are themselves also hash tables
(anonymized; note: {..} = hashes)
%transitiontable = (
 s => {
 a => "x"
 },
 x => {
 a => "x",
 b => "y"
 },
 y => {
 b => "y"
 }
);

Example:
print "$transitiontable{s}{a}\n";

>

Syntactic sugar for
%transitiontable = (
 "s", { "a", "x", },
 "x", { "a", "x" , "b", "y" },
 "y", { "b", "y" },
);

Finite State Automata (FSA)

• Given transition table encoded as a (nested) hash
• How to build a decider (Accept/Reject) in Perl?

Complications to think about:
• How about ε-transitions?
• Multiple end states?
• Multiple start states?
• Non-deterministic FSA?

Finite State Automata (FSA)

%transitiontable = (
 s => {a => "x"},

 x => {a => "x", b => "y"},
 y => {b => "y"}
);
$state = "s";
foreach $c (@ARGV) {
 $state = $transitiontable{$state}{$c};
}
if ($state eq "y") { print "Accept\n"; }
else { print "Reject\n" }

• Example runs:
• perl fsm.prl a b a b
• Reject
• perl fsm.prl a a a b b
• Accept

Finite State Automata (FSA)

• Perl one-liner:
perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"}); $s="s";
for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if $s eq "y"'

Finite State Automata (FSA)

• Perl one-liner examples:
• perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"});
$s="s"; for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if
$s eq "y"' a

• perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"});
$s="s"; for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if
$s eq "y"' a b

• Accept

Finite State Automata (FSA)

this is just pseudo-code
not any real programming language
but can be easily translated

In Python

1. Python dictionary = Perl hash
1. key:value

2. sys.argv = @ARGV
(but numbered from 1, not 0)

3. [1:] slices the command line

In Python
• Python has a data

structure called a
tuple: (e1,..,en)
• Note: Python lists

use [..]
• In Python, crucially

tuples (but not
lists) can also be
dictionary keys

Note: Many other ways of encoding FSA in Python,
e.g. using object-oriented programming (classes)
https://wiki.python.org/moin/FiniteStateMachine#FSA_-_Finite_State_Automation_in_Python

https://wiki.python.org/moin/FiniteStateMachine

Finite State Automata (FSA)

• Practical applications
• can be encoded and run efficiently on a computer
• widely used
– encode regular expressions (e.g. Perl regex)
– morphological analyzers

• Different word forms, e.g. want, wanted, unwanted (suffixation/prefixation)
• see chapter 3 of textbook

• speech recognizers
• Markov models
• = FSA + probabilities

• and much more …

ε-transitions

• jump from state to another state with the empty character
• ε-transition (textbook) or λ-transition
• no increase in expressive power (meaning we could do without the ε-transition)

• examples

20

1
a

ε

2 3
b

> 1
a

b

2 3
b

>

1
a

ε

2 3
b

>

what’s the equivalent without the ε-transition?

ε-transitions

•Can be used to help encode:
1. Multiple start states
2. Multiple end states

•Next time, we'll see:
• Then we can get rid of the ε-transition (by construction)

Backreferences and FSA

• Deep question:
• why are backreferences impossible in FSA?

s x

y

a a

b

b

>

Example: Suppose you wanted a machine that accepted
/(a+b+)\1/
One idea: link two copies of the machine together

x2

y2

a

a

b

b

y

Doesn’t work!
Why?

Backreferences and FSA

Perl:
• note line 10: next state is a

function of previous state and
current symbol ONLY
• ∴ # of a's and b's in the two

halves don't have to match:
• perl fsa.perl aabba
• Reject
• perl fsa.perl aabbaaaabbbb
• Accept
• perl fsa.perl aabbaaaab
• Accept

• fsa.perl

Multiple start states

• Example: simulate this by using an e-transition:

s x

z

a

a

a

b

y

b

b

a

b

> <
ε

• Multiple final states vs. a single state:
also same expressive power.
• Doesn't have to have any final states at

all:
L(machine) = {}

• What's the simplest possible FSA?

