
LING/C SC/PSYC 438/538
Lecture 16

Sandiway Fong

Today's Topics

• Prime number testing using Perl regex
• Finite State Automata (FSA)

Prime Number Testing using Perl Regular
Expressions
• Another example:

• the set of prime numbers is not a regular language (can't do It with FSA/regex)
• Lprime = {2, 3, 5, 7, 11, 13, 17, 19, 23,.. }

Turns out, we can use a short Perl regex to determine membership in this set
.. and to factorize numbers

/^(11+?)\1+$/

Prime Number Testing using Perl regex

• L = {1n | n is prime} is not a regular language

• Keys to making this work:
• \1 backreference
• unary notation for representing numbers, e.g.

• 11111 “five ones” = 5
• 111111 “six ones” = 6

• unary notation allows us to factorize numbers by repetitive pattern matching
• (11)(11)(11) “six ones” = 6
• (111)(111) “six ones” = 6

• numbers that can be factorized in this way aren’t prime!
• no way to get nontrivial subcopies of 11111 “five ones” = 5

• Then /^(11+?)\1+$/ will match anything that’s greater than 1 that’s not prime

can be proved mathematically
using the Pumping Lemma for

regular languages
(later)

Prime Number Testing using Perl regex

• Let’s analyze this Perl regex /^(11+?)\1+$/
• ^ and $ anchor both ends of the strings, forces (11+?)\1+ to cover the entire string
• (11+?) is the non-greedy (shortest) match version of (11+)
• \1+ provides one or more copies of what we previously matched in (11+?)

• Examples:
perl -le '$n = shift; $u = "1" x $n; print "$n prime" if $u !~
/^(11+?)\1+$/' 101
101 prime
perl -le '$n = shift; $u = "1" x $n; print "$n prime" if $u !~
/^(11+?)\1+$/' 103
103 prime
perl -le '$n = shift; $u = "1" x $n; print "$n prime" if $u !~
/^(11+?)\1+$/' 105

Question: is the non-greedy
operator necessary?

Prime Number Testing using Perl regex

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

110"

120"

130"

140"

150"

160"

170"

180"

190"

200"

0" 100000" 200000" 300000" 400000" 500000" 600000" 700000" 800000" 900000"1000000"1100000"1200000"1300000"1400000"1500000"

Computa(on*
Time*(s)*

Prime*Number*

Primality*Tes(ng*Using*Perl*Regexs*

testing with prime numbers only
can take a lot of time to compute …

Prime Numbers
100003
200003
300007
400009
500009
600011
700001
800011
900001
1000003
1100009
1200007
1300021
1400017
1500007

Prime Number Testing using Perl regex

• /^(11+?)\1+$/ vs. /^(11+)\1+$/
• i.e. non-greedy vs. greedy matching
• finds smallest factor vs. largest

• 90021 factored using 3, not a prime (0 secs)
vs.
• 90021 factored using 30007, not a prime (0 secs)

Puzzling behavior: same output non-greedy vs. greedy
900021 factored using 300007, not a prime (48 secs vs. 13 secs)

Prime Number Testing using Perl regex

• http://www.xav.com/perl/lib/Pod/perlre.html

nearest primes to preset limit

 32749 32771

3*32749 32766 3*32771
= 98247 = 98313

http://www.xav.com/perl/lib/Pod/perlre.html

Prime Number Testing using Perl regex

• 32749 x 3 = 98247
• 32771 x 3 = 98313
• When preset limit is exceeded: Perl’s regex matching fails quietly
• Why does it report 32771?

Prime Number Testing using Perl Regular
Expressions
• Can also get non-greedy to skip several factors
• Example: pick non-prime 164055 = 3 x 5 x 10937 (prime factorization)

Non-greedy: missed
factors 3 and 5 …

Because
3 * 54685 = 164055
5 * 32811 = 164055
 32766 limit
15 * 10937 = 164055

greedy
version

Prime Number Testing using Perl Regular
Expressions
• Results are still right so far though:
• wrt. prime vs. non-prime

• But we predict it will report an incorrect result for
• 1,073,938,441
• It should claim (incorrectly) that this is prime since 1073938441 =

327712

• (32766 is the limit for the number of bundles)

https://primes.utm.edu/lists/small/10000.txt

https://primes.utm.edu/lists/small/10000.txt

Regular Languages

• Three formalisms:
• All formally equivalent (no difference in expressive power)
• i.e. if you can encode it using a RE, you can do it using a FSA or regular

grammar, and so on …

Regular
Grammars

FSA Regular
Expressions

Regular Languages

we'll talk about formal equivalence next time…

Note: Perl regexs are more powerful
than the math characterization:
• backreferences \n,
• recursive regexs (?n),
• insertion of general code(?{…})

Regular Languages
•A regular language is the set of strings

• (including possibly the empty string)
• (set itself could also be empty)
• (set can be infinite)
• generated by a regex/FSA/Regular Grammar

Note: in formal language theory: a language =def set of strings
(we don't specify how it's generated)

Regular Languages

• Example:
• Language: L = { a+b+ }
 “one or more a’s followed by one or more b’s”
 L is a regular language

• described by a regular expression (we’ll define it formally next time)
• Note:

• infinite set of strings belonging to language L
• e.g. abbb, aaaab, aabb, *abab, *l

• Notation:
• l is the empty string (or string with zero length),
 sometimes ε is used instead
• * means string is not in the language

Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

Conventions (used here):
1. > Indicates start state
2. Red circle indicates end (accepting) state
3. we accept a input string only when we’re in an

end state and we’re at the end of the string

Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

There is a natural correspondence between
components of the FSA and the regex defining L

Note:
L = {a+b+}
L = {aa*bb*}

Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

deterministic FSA (DFSA)
no ambiguity about where to go at any given state
i.e. for each input symbol in the alphabet at any
given state, there is a unique “action” to take

non-deterministic FSA (NDFSA)
no restriction on ambiguity (surprisingly, no increase in power)

Finite State Automata (FSA)

• more formally
• (Q,s,f,Σ,d)
1. set of states (Q): {s,x,y} must be a finite set
2. start state (s): s
3. end state(s) (f): y
4. alphabet (Σ): {a, b}
5. transition function d:

signature: character × state → state
• d(a,s)=x
• d(a,x)=x
• d(b,x)=y
• d(b,y)=y

s x

y

a a

b

b

>

Finite State Automata (FSA)

• In Perl
transition function d:

• d(a,s)=x
• d(a,x)=x
• d(b,x)=y
• d(b,y)=y

s x

y

a a

b

b

We can simulate our 2D transition table using a hash table
whose elements are themselves also hash tables
(anonymized; note: {..} = hashes)
%transitiontable = (
 s => {
 a => "x"
 },
 x => {
 a => "x",
 b => "y"
 },
 y => {
 b => "y"
 }
);

Example:
print "$transitiontable{s}{a}\n";

>

Syntactic sugar for
%transitiontable = (
 "s", { "a", "x", },
 "x", { "a", "x" , "b", "y" },
 "y", { "b", "y" },
);

Finite State Automata (FSA)

• Given transition table encoded as a (nested) hash
• How to build a decider (Accept/Reject) in Perl?

Complications to think about:
• How about ε-transitions?
• Multiple end states?
• Multiple start states?
• Non-deterministic FSA?

Finite State Automata (FSA)

%transitiontable = (
 s => {a => "x"},
 x => {a => "x", b => "y"},
 y => {b => "y"}
);
$state = "s";

foreach $c (@ARGV) {

 $state = $transitiontable{$state}{$c};

}

if ($state eq "y") { print "Accept\n"; }

else { print "Reject\n" }

• Example runs:
• perl fsm.prl a b a b
• Reject
• perl fsm.prl a a a b b
• Accept

Finite State Automata (FSA)

• Perl one-liner:
perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"}); $s="s";
for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if $s eq "y"'

Finite State Automata (FSA)

• Perl one-liner examples:
• perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"});
$s="s"; for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if
$s eq "y"' a

• perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"});
$s="s"; for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if
$s eq "y"' a b

• Accept

Finite State Automata (FSA)

this is just pseudo-code
not any real programming language
but can be easily translated

In Python

1. Python dictionary = Perl hash
1. key:value

2. sys.argv = @ARGV
(but numbered from 1, not 0)

3. [1:] slices the command line

In Python
• Python has a data

structure called a
tuple: (e1,..,en)
• Note: Python lists

use [..]
• In Python, crucially

tuples (but not
lists) can also be
dictionary keys

Note: Many other ways of encoding FSA in Python,
e.g. using object-oriented programming (classes)
https://wiki.python.org/moin/FiniteStateMachine#FSA_-_Finite_State_Automation_in_Python

https://wiki.python.org/moin/FiniteStateMachine

Finite State Automata (FSA)

• Practical applications
• can be encoded and run efficiently on a computer
• widely used
– encode regular expressions (e.g. Perl regex)
– morphological analyzers

• Different word forms, e.g. want, wanted, unwanted (suffixation/prefixation)
• see chapter 3 of textbook

• speech recognizers
• Markov models
• = FSA + probabilities

• and much more …

ε-transitions

• jump from state to another state with the empty character
• ε-transition (textbook) or λ-transition
• no increase in expressive power (meaning we could do without the ε-transition)

• examples

28

1
a

ε

2 3
b

> 1
a

b

2 3
b

>

1
a

ε

2 3
b

>

what’s the equivalent without the ε-transition?

ε-transitions

•Can be used to help encode:
1. Multiple start states
2. Multiple end states

•Next time, we'll see:
• Then we can get rid of the ε-transition (by construction)

Backreferences and FSA

• Deep question:
• why are backreferences impossible in FSA?

s x

y

a a

b

b

>

Example: Suppose you wanted a machine that accepted
/(a+b+)\1/
One idea: link two copies of the machine together

x2

y2

a

a

b

b

y

Doesn’t work!
Why?

Backreferences and FSA

• Perl implementation:
number of a's and b's
in the two halves don't
have to match:

• perl fsa.perl aabba
• Reject
• perl fsa.perl
aabbaaaabbbb

• Accept
• perl fsa.perl
aabbaaaab

• Accept

• fsa.perl

