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Today's Topics

• Prime number testing using Perl regex
• Finite State Automata (FSA)



Prime Number Testing using Perl Regular 
Expressions
• Another example:

• the set of prime numbers is not a regular language (can't do It with FSA/regex)
• Lprime = {2, 3, 5, 7, 11, 13, 17, 19, 23,.. } 

Turns out, we can use a short Perl regex to determine membership in this set
.. and to factorize numbers

/^(11+?)\1+$/



Prime Number Testing using Perl regex

• L = {1n | n is prime} is not a regular language

• Keys to making this work: 
• \1 backreference
• unary notation for representing numbers, e.g.

• 11111 “five ones” = 5
• 111111 “six ones” = 6

• unary notation allows us to factorize numbers by repetitive pattern matching
• (11)(11)(11) “six ones” = 6
• (111)(111) “six ones” = 6

• numbers that can be factorized in this way aren’t prime!
• no way to get nontrivial subcopies of 11111 “five ones” = 5

• Then /^(11+?)\1+$/ will match anything that’s greater than 1 that’s not prime 

can be proved mathematically 
using the Pumping Lemma for 

regular languages
(later)



Prime Number Testing using Perl regex

• Let’s analyze this Perl regex /^(11+?)\1+$/
• ^ and $ anchor both ends of the strings, forces (11+?)\1+ to cover the entire string
• (11+?) is the non-greedy (shortest) match version of (11+)
• \1+ provides one or more copies of what we previously matched in (11+?)

• Examples:
perl -le '$n = shift; $u = "1" x $n; print "$n prime" if $u !~ 
/^(11+?)\1+$/' 101
101 prime
perl -le '$n = shift; $u = "1" x $n; print "$n prime" if $u !~ 
/^(11+?)\1+$/' 103
103 prime
perl -le '$n = shift; $u = "1" x $n; print "$n prime" if $u !~ 
/^(11+?)\1+$/' 105

Question: is the non-greedy 
operator necessary?



Prime Number Testing using Perl regex
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Prime Number Testing using Perl regex

• /^(11+?)\1+$/ vs. /^(11+)\1+$/
• i.e. non-greedy vs. greedy matching
• finds smallest factor vs. largest

• 90021 factored using 3, not a prime (0 secs)
vs.
• 90021 factored using 30007, not a prime (0 secs)

Puzzling behavior: same output non-greedy vs. greedy
900021 factored using 300007, not a prime (48 secs vs. 13 secs)



Prime Number Testing using Perl regex

• http://www.xav.com/perl/lib/Pod/perlre.html

nearest primes to preset limit

         32749   32771
             
3*32749       32766    3*32771
= 98247                        = 98313

http://www.xav.com/perl/lib/Pod/perlre.html


Prime Number Testing using Perl regex

• 32749 x 3 = 98247
• 32771 x 3 = 98313
• When preset limit is exceeded: Perl’s regex matching fails quietly
• Why does it report 32771?



Prime Number Testing using Perl Regular 
Expressions
• Can also get non-greedy to skip several factors
• Example: pick non-prime 164055 = 3 x 5 x 10937 (prime factorization)

Non-greedy: missed 
factors 3 and 5 …

Because
3 *    54685 = 164055
5 *    32811 = 164055
         32766 limit
15 * 10937 = 164055

greedy 
version



Prime Number Testing using Perl Regular 
Expressions
• Results are still right so far though: 
• wrt. prime vs. non-prime

• But we predict it will report an incorrect result for
• 1,073,938,441
• It should claim (incorrectly) that this is prime since 1073938441 = 

327712 

• (32766 is the limit for the number of bundles)

https://primes.utm.edu/lists/small/10000.txt

https://primes.utm.edu/lists/small/10000.txt


Regular Languages

• Three formalisms:
• All formally equivalent (no difference in expressive power)
• i.e. if you can encode it using a RE, you can do it using a FSA or regular 

grammar, and so on …

Regular 
Grammars

FSA Regular 
Expressions

Regular Languages

we'll talk about formal equivalence next time…

Note: Perl regexs are more powerful 
than the math characterization:
• backreferences \n, 
• recursive regexs (?n),
• insertion of general code(?{…})



Regular Languages
•A regular language is the set of strings 

• (including possibly the empty string)
• (set itself could also be empty)
• (set can be infinite)
• generated by a regex/FSA/Regular Grammar

Note: in formal language theory: a language =def set of strings
(we don't specify how it's generated)



Regular Languages

• Example:
• Language: L = { a+b+ } 
 “one or more a’s followed by one or more b’s”
 L is a regular language

• described by a regular expression (we’ll define it formally next time)
• Note: 

• infinite set of strings belonging to language L
• e.g. abbb, aaaab, aabb, *abab, *l

• Notation:
• l is the empty string (or string with zero length), 
 sometimes ε is used instead
• * means string is not in the language



Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

Conventions (used here):
1.  > Indicates start state
2.  Red circle indicates end (accepting) state
3.  we accept a input string only when we’re in an 

end state and we’re at the end of the string



Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

There is a natural correspondence between
components of the FSA and the regex defining L 

Note: 
L = {a+b+}
L = {aa*bb*}



Finite State Automata (FSA)

• L = { a+b+ } can be also be generated by the following FSA

s x

y

a
a

b

b

>

deterministic FSA (DFSA)
no ambiguity about  where to go at any given state
i.e. for each input symbol in the alphabet at any 
given state, there is a unique “action” to take

non-deterministic FSA (NDFSA)
no restriction on ambiguity (surprisingly, no increase in power)



Finite State Automata (FSA)

• more formally
• (Q,s,f,Σ,d)
1. set of states (Q): {s,x,y} must be a finite set
2. start state (s): s
3. end state(s) (f): y
4. alphabet (Σ): {a, b}
5. transition function d: 

signature: character × state → state
• d(a,s)=x
• d(a,x)=x
• d(b,x)=y
• d(b,y)=y

s x

y

a a

b

b

>



Finite State Automata (FSA)

• In Perl
transition function d: 

• d(a,s)=x
• d(a,x)=x
• d(b,x)=y
• d(b,y)=y

s x

y

a a

b

b

We can simulate our 2D transition table using a hash table 
whose elements are themselves also hash tables
(anonymized; note: {..}  =  hashes) 
%transitiontable = (
    s => {
        a   => "x"
    },
    x => {
        a   => "x",
        b   => "y"
    },
    y => {
        b   => "y"
    }
);

Example: 
print "$transitiontable{s}{a}\n";

>

Syntactic sugar for
%transitiontable = (
    "s", { "a", "x", },
    "x", { "a", "x" , "b",  "y" },
    "y", { "b", "y" }, 
);



Finite State Automata (FSA)

• Given transition table encoded as a (nested) hash 
• How to build a decider (Accept/Reject) in Perl?

Complications to think about:
• How about ε-transitions?
• Multiple end states?
• Multiple start states?
• Non-deterministic FSA?



Finite State Automata (FSA)

%transitiontable = (
    s => {a   => "x"},
    x => {a   => "x", b   => "y"},
    y => {b   => "y"}
);
$state = "s";

foreach $c (@ARGV) {

    $state = $transitiontable{$state}{$c};

}

if ($state eq "y") { print "Accept\n"; } 

else { print "Reject\n" }

• Example runs:
• perl fsm.prl a b a b
• Reject
• perl fsm.prl a a a b b
• Accept



Finite State Automata (FSA)

• Perl one-liner:
perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"}); $s="s"; 
for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if $s eq "y"'



Finite State Automata (FSA)

• Perl one-liner examples:
• perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"}); 
$s="s"; for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if 
$s eq "y"' a

• perl -le '%h=(s=>{a=>"x"},x=>{a=>"x",b=>"y"},y=>{b=>"y"}); 
$s="s"; for $c (@ARGV) {$s=$h{$s}{$c}}; print "Accept" if 
$s eq "y"' a b

• Accept



Finite State Automata (FSA)

this is just pseudo-code
not any real programming language
but can be easily translated



In Python

1. Python dictionary = Perl hash
1. key:value

2. sys.argv = @ARGV 
(but numbered from 1, not 0)

3. [1:] slices the command line



In Python
• Python has a data 

structure called a 
tuple: (e1,..,en)
• Note: Python lists 

use [..]
• In Python, crucially 

tuples (but not 
lists) can also be 
dictionary keys

Note: Many other ways of encoding FSA in Python, 
e.g. using object-oriented programming (classes)
https://wiki.python.org/moin/FiniteStateMachine#FSA_-_Finite_State_Automation_in_Python

https://wiki.python.org/moin/FiniteStateMachine


Finite State Automata (FSA)

•  Practical applications
• can be encoded and run efficiently on a computer
• widely used
– encode regular expressions (e.g. Perl regex)
– morphological analyzers

• Different word forms, e.g. want, wanted, unwanted (suffixation/prefixation)
• see chapter 3 of textbook

• speech recognizers 
•  Markov models 
•   = FSA + probabilities 

• and much more …



ε-transitions

• jump from state to another state with the empty character
• ε-transition (textbook) or λ-transition
• no increase in expressive power (meaning we could do without the ε-transition)

• examples

28

1
a

ε

2 3
b

> 1
a

b

2 3
b

>

1
a

ε

2 3
b

>

what’s the equivalent without the ε-transition?



ε-transitions

•Can be used to help encode:
1. Multiple start states
2. Multiple end states

•Next time, we'll see:
• Then we can get rid of the ε-transition (by construction)



Backreferences and FSA

• Deep question:
• why are backreferences impossible in FSA?

s x

y

a a

b

b

>

Example: Suppose you wanted a machine that accepted 
/(a+b+)\1/
One idea:  link two copies of the machine together

x2

y2

a

a

b

b

y

Doesn’t work!
Why?



Backreferences and FSA

• Perl implementation: 
number of a's and b's 
in the two halves don't 
have to match:

• perl fsa.perl aabba
• Reject
• perl fsa.perl 
aabbaaaabbbb

• Accept
• perl fsa.perl 
aabbaaaab

• Accept

• fsa.perl


