LING/C SC/PSYC 438/538

Lecture 15
Sandiway Fong

Today's Topics

* Homework 9 review
* Ungraded regex exercises
* Regex recursion

Homework 9 Review

* First, notice | said you may assume the patterns:
- the noun; verb the noun, > verb(noun;, noun,)
« the noun; who verb the noun, = verb(noun;, noun,)

* Perl regex patterns:
« /the (\w+) (\w+) the (\w+)/ g print "$2($1, $3)"
« /the (\w+) who (\w+) the (\w+)/ w= print "$2($1, $3)"

Homework 9 Review

Perl regex pattern testing:

e perl -le '$_ = qq/@ARGV/; /the (\w+) (\w+) the (\w+)/;
print "$2($1, $3)"' the woman encountered the boy who
encountered the girl

- encountered(woman, boy)

perl -le '$_ = qq/@ARGV/; /the (\w+) who (\w+) the
(\w+)/; print "$2($1, $3)"' the woman encountered the
boy who encountered the girl

- encountered(boy, girl)

Homework 9 Review

* Next thing to noticels the regex overlap: 1
« the woman encountered the boy who encountered the girl who found the man

« the (\w+) (\w+) the (\w+)
the (\w+) who (\w+) the (\w+)
the (\w+) who (\w+) the (\w+)

* Recall regex matching goes from left to right (keeping track of a pointer)
* We want to iterate this matching using the g (global) flag

* One solution: make the overlapping part a lookahead (so the pointer is not
advanced):

ei.e. (?=the (\w+))

Homework 9 Review

* Two regex patterns:

« /the (\w+) (\w+) the (\w+)/ g print "$2($1, $3)"
« /the (\w+) (\w+) the (\w+)/ w= print "$2(%$1, $3)"
* One regex pattern:
« /the (\w+) (\w+) the (\w+)/ You can also use a non- capturing group
(?:regexp)

 With lookahead:
« /the (\w+) (who)?(\w+) (?=the (\w+))/

* Global match using a while loop:
- while (/the (\w+) (who)?(\w+) (?=the (\w+))/g) {
« print "$3(%$2, $4)"
- }

Homework 9 Review

* Example:

$ perl -le '$_ = gq/@ARGV/; while (/the (\w+) (who)?(\w+) (?=the
(\w+))/g){ print "$3($1, $4)"}' the woman encountered the boy

encountered(woman, boy)

$ perl -le '$_ = gq/@ARGV/; while (/the (\w+) (who)?(\w+) (?=the
(\w+))/g){ print "$3($1, $4)"}' the woman encountered the boy who
encountered the girl

encountered(woman, boy)
encountered(boy, girl)

Homework 9 Review

* Example:
erl -le ' = ARGV/; while (/the (\w+) (who)?(\w+) (?=the
%\&+))/g){ p%int [%é?$1, /4)W}'l the/woman\gncouﬂtered %Ke boy who

encountered the girl who tfound the man
encountered(woman, boy)
encountered(boy, girl)

found(girl, man)

erl -le '$_ = ARGV/; while (/the (\w+) (who)?(\w+) (?=the
%\a+§)/g)$ p%int 9%§%$1, /4)"?' the/woman\encountered %he boy who
encountéred the girl who found the man who chased the cat

encountered(woman, boy)
encountered(boy, girl)
found(girl, man)
chased(man, cat)

CoreNLP

1. the woman encountered the boy
2. the woman encountered the boy who encountered the girl

-A-det\@t—nsu b]@/ g‘-dea@

the woman encountered the boy

aclrelcl
obj nsubj obj
-A-det nsubj TVEB W VED det

the woman encountered the who éncountered the g|rI

CoreNLP

3. the woman encountered the boy who encountered the girl who
found the man

4. the woman encountered the boy who encountered the girl who
found the man who chased the cat

aclrrelcl aclrelcl

obj nsubj obj nsubj obj
-A—det nsubj \{VBE det ref-h- VBD}/ det ref-& VBD %

the woman encountered the who encountered the g|rl who found the ma
by acl: reblj bj acl: reblj bj acl: reg]c bj
(o] nsu (o] nsu (o] nsu oDj—»
-&det nSUDj\{VBD}/ M *VBD}/ Wgﬂs NVBD Wdet ref-b- VBD{
the woman encountered the who éncountered the girl who found the man who chased

—obj
or* "\

the cat

Homework 9 Review

* Q1 (nsubj relativization):
* the woman encountered the boy who encountered the girl
* relative pronoun is obligatory
* *the woman encountered the boy encountered the girl

* Q2 (dobj relativization):
* the woman discovered the boy the girl encountered
* the woman discovered the boy who the girl encountered
* relative pronoun is optional

CoreNLP

5. the woman discovered the boy the girl encountered

parataxis

obj
det nsub] det det nsubj
i 215 R 1 Rl \:10)

the woman dlscovered the boy the girl encountered

aclirelcl
obj obj
!A-det nsub]\@/— det ref-h-wP !ﬁdetwnsubj

the woman discovered the boy who the qgirl encountered'

https://universaldependencies.org/u/dep/index.html

Background: Universal Dependencies

vocative

expl
dislocated

csubj,

ccomp

Xcomp

advcl advmod *
discourse

acl amod

lig orphan
parataxis goeswith
reparandum

https://universaldependencies.org/u/dep/index.html

Background: Universal Dependencies

parataxis: parataxis

The parataxis relation (from Greek for “place side by side”) is a relation between a word (often the main predicate of a
sentence) and other elements, such as a sentential parenthetical or a clause after a“:" or a“;", placed side by side without any
explicit coordination, subordination, or argument relation with the head word. Parataxis is a discourse-like equivalent of
coordination, and so usually obeys an iconic ordering. Hence it is normal for the first part of a sentence to be the head and the
second part to be the parataxis dependent, regardless of the headedness properties of the language. But things do get more
complicated, such as cases of parentheticals, which appear medially.

[(IIIThAE

. 1 Let's face it we 're annoyed

punct parataxis

B eFe ¥"es B 88 B

| 2 The guy , John said , left early in the morning

CoreNLP

6. the woman discovered the boy the girl the man found encountered

obj aclrelcl
det nsub] det det det nsubj xcomp
oy “VBD oo “\WBDJ VBN

the woman dlscovered the boy the g|rI the man found encountered

CoreNLP

6. the woman discovered the boy who the girl the man found

encountered
iobj aclrelcl
-&detwnsub]\m/_-ﬁdet ‘ WP det NN det nsubj BD xcomp VBN

oy who the girl the man found encountered

ot totalW o=,

Background: Universal Dependencies

* j.e. when we have no clue what's going on!

dep: unspecified dependency

A dependency can be labeled as dep when it is impossible to determine a more precise relation. This may be because of a
weird grammatical construction, or a limitation in conversion or parsing software. The use of dep should be avoided as much

as possible.

dep
advmod advmod
g'nmodx‘:rmsub] advmod ’h qaavmod

L my dad does nt really not that good

CoreNLP

6. the woman discovered the boy who the girl who the man found
encountered

iob] d acl:relcl
0 ep
-A-det nsub]@}/_ %rdepﬁwp deetwnsubj VBD obj—

the woman discovered the boy who the girl whothe man found

Ob]—m

encou ntered

CoreNLP

7. the woman discovered the boy the girl the man the cat chased
found encountered

aclrelcl
j obj ” nsubj:pass
ob } / ep
det@bnsub] DlT det Ny det % aux:pass xcomp

S S——— | g

the woman discovered the boy the girl the man the cat chased found

—xcomp—-@]

encountered

Background: Universal Dependencies

xcomp: open clausal complement

An open clausal complement (xcomp) of a verb or an adjective is (i) a core argument of the verb, (ii) which is without its own subject and
(iii) for which the reference of the subject is necessarily determined by an argument external to the xcomp. The third requirement is often
referred to as obligatory control. An xcomp can also be described as a predicative complement. The subject of the xcomp is normally, but
not always, controlled by the object of the next higher clause, if there is one, or else by the subject of the next higher clause. These clauses
tend to be non-finite in many languages, but they can be finite as well. The name xcomp is borrowed from Lexical-Functional Grammar
(see Joan Bresnan, 2001, Lexical-Functional Syntax, chapter on “Predication Relations”).

s 58w 8 8

1 We expect them to change their minds

2 "9 88 80 8

| 2 Sue asked George to respond to her offer

Homework 9 Review

Center-embedding (distance problem):

2. the woman discovered the boy the girl encountered
the woman discovered [the boygg, the girlysys encountered g poy) |

3. the woman discovered the boy the girl the man found encountered

the woman discovered [the boygg, [the girlyog the manygg found ., i)] €ncountered gy poy) |

4. the woman discovered the boy the girl the man the cat chased found
encountered

the woman discovered [the boy [the girl [the mangg, the catygyg chased g man) | foundman giry 1 €ncountered gy poy) |

b |

Ungraded regex exercises

Exercises (from the textbook)

2.1 Write regular expressions for the following languages. You may use either
Perl/Python notation or the minimal “algebraic” notation of Section 2.3, but
make sure to say which one you are using. By “word”, we mean an alphabetic
string separated from other words by whitespace, any relevant punctuation, line

|f you'd ||ke breaks, and so forth.
a bit more

1. the set of all alphabetic strings;
2. the set of all lower case alphabetic strings ending in a b;

pra ctice 3. the set of all strings with two consecutive repeated words (e.g., “Humbert
Humbert” and “the the” but not “the bug” or “the big bug”);

4. the set of all strings from the alphabet a, b such that each a is immediately
preceded by and immediately followed by a b;

5. all strings that start at the beginning of the line with an integer and that end
at the end of the line with a word;

6. all strings that have both the word grotto and the word raven in them (but
not, e.g., words like grottos that merely contain the word grotto);

7. write a pattern that places the first word of an English sentence in a register.
Deal with punctuation.

Recursion

* The concept of recursion:
* | think the man thought | knew he thought | knew
* [s|think [the man thought [s | knew [he thought ...]]]] (S = sentence/clause)

* Constituent structure (embedding — potentially indefinitely)
* There may be performance limitations on types of embedding
* Dependency structure (chaining ccomp relations)
Dependency | e labe Part of speech Lemma Morphology
\" | root ’ '\ "\ \'\)| 'H ",\,J ,TH‘, ‘,,',‘, C) P
| think the man thought | knew he thought | knew
think know think know
PRON VERB DET NOUN VERB PRON VERB PRON VERB PRON VERB
case=NOMINATIVE mood=INDICATIVE number=SINGULAR mood=INDICATIVE case=NOMINATIVE mood=INDICATIVE case=NOMINATIVE mood=INDICATIVE case=NOMINATIVE mood=INDICATIVE
number=SINGULAR tense=PRESENT tense=PAST number=SINGULAR tense=PAST gender=MASCULINE tense=PAST number=SINGULAR tense=PAST
person=FIRST person=FIRST number=SINGULAR person=FIRST

person=THIRD

Recursion

* The concept of recursion:
*n!=nx(n-1)! forn €N, and 0! =1 (factorial function)

can be defined non-recursively equivalently as:
enl=T]"i (product-based factorial function)

Regex Recursion

* Example: palindrome words
* e.g.l, dad, noon, kayak, redder, racecar and redivider
» or phrases (if we ignore white space and punctuation):
* e.g. Was ita carora catlsaw?

* Normally, you can't write a regex for palindromes. Why?
* Fundamentally, it involves embedding, e.g. the use of a stack

* Perl regexs can because we can use backreferences recursively.

* regex recursion refers to the ability to repeatedly embed regexs using:
« (?Group—Number)

Regex Recursion

* Program: | (?group-ref)

(? PARNO) (?-PARNO) (?+PARNO) (?R) (20)

Recursive subpattern. Treat the contents of a given capture buffer in the current pattern as an independent
subpattern and attempt to match it at the current position in the string. Information about capture state from
the caller for things like backreferences is available to the subpattern, but capture buffers set by the
subpattern are not visible to the caller.

perl —e '$word = shift; print $word; print " not" if $word !~
/N(O\w? | (\w) (?1)\2)$/; print " a palindrome\n"' kayak

kayak a palindrome

perl —e '$word = shift; print $word; print " not" if $word !~
/N(O\w? | (\w) (?1)\2)$/; print " a palindrome\n"' abacus

abacus not a palindrome

Regex Recursion

/ / N\ \
v \4 \ \

« /M(\w? | (\w) (?21)\2)%$/
1 2

® (?PARNO) | (?-PARNO) | (?+PARNO) (?R) (?0)

PARNO is a sequence of digits (not starting with 0) whose value reflects the paren-number of the capture
group to recurse to. (?R) recurses to the beginning of the whole pattern. (?@) is an alternate syntax for

(?R) . If PARNO is preceded by a plus or minus sign then it is assumed to be relative, with negative
numbers indicating preceding capture groups and positive ones following. Thus (?-1) refers to the most
recently declared group, and (?+1) indicates the next group to be declared. Note that the counting for
relative recursion differs from that of relative backreferences, in that with recursion unclosed groups are
included.

Regex Recursion

 Successful match with kayak

/N(\w? | (\w) (?1)\2)$/ | kayak
1. K K K|layak
2. a a ka|yak
3. Y kKay | ak

Regex Recursion

e Failed match with abacus

/~(\w? | (\w) (?1)\2)%/ |abacus

1. a a a|bacus a

2. b b ab|acus ba
3. a a aba|cus aba
4, C C abac|us caba
5..

Regex Recursion

perl —e '$word = shift; print
/2(O\w? | (\w) (?1)\2)$/; print "

noon a palindrome

perl —e '$word = shift; print
/2(O\w? | (\w) (?1)\2)$/; print "

I a palindrome

perl —e '$word = shift; print
/2(O\w? | (\w) (?1)\2)$/; print "

a palindrome

$word; print " not" if $word !~
a palindrome\n"' noon

$word; print " not" if $word !~
a palindrome\n"' I

$word; print " not" if $word !~
a palindrome\n"'

Regex Recursion

e Successful match with noon

/(\w? | (\w) (?1)\2)$/ |noon

1 n n njoon
2. 0 0 nolon
3 € nolon
€ = empty string

Context-Free Grammar (CFG)

Assume for now, the alphabet is lowercase English letters.

* 53 (26+26+1) rules for the palindrome grammar:
1.P —> A (empty string)
2. P —> t (terminal, for t € [a—z], 26 rules)

28.P ——> a P a

53.P —> z P z (another 26 rules)
* Conceptually simpler...

Regex Recursion

Python:

import re
re.match(r'~(\w?| (\w) (?1)\2)$',"releveler")
 Let's see what happens...

Regex Recursion

python3
Python 3.7.3 (v3.7.3:efdec6ed12, Mar 25 2019, 16:52:21)
[Clang 6.0 (clang—600.0.57)] on darwin

T¥RSrmpeiBn: “CcoPYriont,

"credits" or "license" for more

>>> import re
>>> re.match(r'*(\w?|(\w) (?1)\2)$',"releveler")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

"/lerary{Frameworks/Python . framework/Versions/3.7/1ib/python3.7
py", line 173, in match

return _compile(pattern, flags).match(string)

;/L13§gry{FramgggfkiéPython {ramework/Ver51ons/3 .7/1ib/python3.7

p = sre_compile.compile(pattern, flags)

;é%ébgggg/fgagswor%iégy§gg? Iﬁa?gmgg%/Versions/3.7/1ib/python3.7

p = sre_parse.parse(p, flags)
Fil
;é%ibﬁgFgéFggmew?Ehg/gg%?ognfggﬁggork/Ver51ons/3 7/1ib/python3.7
p = _parse_sub(source, pattern, flags & SRE_FLAG_VERBOSE, 0)

Fil
;é%i?ﬁgFgéFggmew?Ehg/z¥g?ognfrggﬁggrEGVer51ons/3 7/1ib/python3.7

not nested and not items))

ile
“/L1brary/Frameworks/P¥thon . framework/Versions/3.7/1ib/python3.7
/sre_parse.py", line 816, in _parse

p = _parse_sub(source, state, sub_verbose, nested + 1)

ile
“/L1brary/Frameworks/P¥thon . framework/Versions/3.7/1ib/python3.7
/sre_parse.py", line 426, in _parse_sub

not nested and not items))

ile
“/L1brary/Frameworks/P%thon . framework/Versions/3.7/1ib/python3.7
/sre_parse.py", line 806, in _parse

len(char) + 1)
re.error: unknown extension ?1 at position 11

Regex Recursion

Python: alternate regex module handles recursion
* https://pypi.org/project/regex/

regex 2019.08.19

pip install regex I&

See also: The third-party regex module, which has an APl compatible with the standard library re
module, but offers additional functionality and a more thorough Unicode support.

https://pypi.org/project/regex/

