LING/C SC/PSYC 438/538

Lecture 13
Sandiway Fong

Today's Topic

- Homework 8 Review
- Last Time:
- two ways of inserting Perl code into regex
- s/regex/code/e
- (?\{code\})
- More on powerful features in Perl regex:
- lookahead
- lookbehind
- Predicate-Argument Structure
- preparing you for Thursday's Homework 9
- Framenet
- Stanford CoreNLP

Homework 8 Review

- In the real world, i.e. with real datasets, we can't be absolutely sure:
- we matched everything we want (Recall ratio)
- we don't have spurious matches (Precision ratio)
- we can't even know what the overall Precision/Recall is
- but we can get a sample estimate

Homework 8 Review

- Question 1a:
- in English, names typically begin with an Upper case letter. Other characters may be lower/upper case or include a hyphen/dash (-), e.g. $A B C-C D E$.
- Write a regex and find all the matching words in the article. How many are there?
- Code:
- perl -le 'open \$f, "pandora.txt"; while (<\$f>) \{while (/\b[A-Z] [A-Za-z-]*\b/g) \{print \$\&\}\}' | wc -l
- 1097
- Permit single letter names? If not, \b [A-Z] [A-Za-z-] +\b
- Gets more than named entities: words at the start of sentence: e.g. The
- Doesn't get names beginning with lowercase letter, e.g. al-XYZ, de or bin.

https://www.thefashionlaw.com

As Twitter Becomes X, A Dive into Single Letter Trademarks

TFL

Trademark rights in (and registrations for) a single letter for use on certain goods/services? This is not only possible under trademark law in the U.S., but as it turns out, it is pretty common, as well. "Single letters are among the most popular trademarks registered in the United States," Chris Chafin previously wrote for Fast Co. Back in 2017, each letter of the alphabet was the subject of, at a minimum, hundreds of trademark registrations, he noted. There were, for example, over 2,000 registrations for the letter S, making it the most popular. There were 1,102 registrations for $\mathrm{V}, 1,100$ for E , and 1,816 for A . And those numbers have risen since then, there are currently almost 1,000 registrations for the letter X , as companies flock to and secure trademark registrations for single letters, usually in stylized forms.

Homework 8 Review

- Question 1b: last lecture we mentioned use of
- open qw(:std :utf8);
- Find the differences in the words reported when running your code with this declaration.
- Hint: you may want to think about [A-Za-z-] vs [$\mathrm{X} \mathrm{w}-$]
- Code:

- 1092 (vs. 1097: Alem Erdo O Piau R)
- perl -le 'use open qw(:std :utf8) ; open \$f, "pandora; txt";
- 1097
- Alemán Erdoğan Oštro Piauí Rönesans

Homework 8 Review

- Question 1c:
- do all name words begin with an Upper case letter? Find two that don't.
- al-Zayanis
- Zayed bin Rashid al-Zayani
- Helena de Chair
- then-President
- 1MDB
- maybe others?

Homework 8 Review

- Question 2:
- abbreviations/acronyms often consist of words, \#letters ≥ 2, containing only Upper case letters, possibly with periods separating them,
- e.g.TV, US, U.S., TASS.
- Write a regex for this. How many are there?
- Code:
- perl -le 'open \$f, "pandora.txt"; while (<\$f>) \{while (/\b[AZ\.]\{2,\}\b/g) \{print \$\&\}\}' | wc -l
- 90
- Gets uppercase words too:
- WANT MORE STORIES THAT ROCK THE WORLD

Homework 8 Review

- Question 3:
- many named entities are n-grams, $n \geq 2$, a sequence of words:
- e.g. Al Mawarid Bank, British Prime Minister Tony Blair
- each beginning with an Upper case letter, optionally beginning with a title with leading capitalization:
- e.g. Mr(s), Ms, Dr, (Prime) Minister, President or King/Queen (of).
- e.g. King of Jordan
- Write a regex and find all the matching sequences (\#words ≥ 2). Print them. How many are there?
- Code:
- perl -le 'use open qw(:std ;utf8); open \$f "pandora.txt"; while \$\&\$fl) \{while (/\b[A-Z][\W-]*((\S+of)?\s+[A-Z][\W-]*)+/g)'\{print
- 221
- Jackal of Zacapa / House of Commons

Homework 8 Review

The Pandora Papers	Claudia Schiffer
King of Jordan	Fat One
Czech Republic	Sachin Tendulkar
British Prime Minister Tony Blair	Claudia Schiffer Image
Russian President Vladimir Putin	Getty Images United States French Riviera Czech Republic
Great Plains	United Kingdom
United States	The Pandora Papers
King of Jordan	Pandora Papers
Arab Spring	British Virgin Islands
Pandora Papers	A Morgan Stanley
The International Conssortium of	The Pandora Papers
Investigative Journalists	Baker McKenzie
Pandora Papers	Baker McKenzie
An ICIJ	Ihor Kolomoisky
British Virgin Islands	Baker McKenzie
Paris-based Organization	Jho Low
Economic Cooperation	Baker McKenzie
WANT MORE STORIES THAT ROCK THE WORLD	Hong Kong
The Pandora Papers	Baker McKenzie
Sachin Tendulkar	Baker McKenzie

Panama Papers
The Panama Papers
Mossack Fonseca
The Pandora Papers
The Pandora Papers
The Washington Post
The Guardian
Radio France
Oštro Croatia
Indian Express
The Standard
Le Desk
Diario El Universo
Persian Gulf
South China Sea
The Pandora Papers
British Virgin Islands
King Abdullah II
King Abdullah II
Jordan Pix
Getty Images
Middle East
Annelle Sheline

Middle East
Pandora Papers
Najib Mikati
Hassan Diab
Riad Salameh
Marwan Kheireddine
Al Mawarid Bank
Pandora Papers
Al Mawarid Bank
Wafaa Abou Hamdan
Imran Khan
Panama Papers
The Panama Papers
Nawaz Sharif
The Guardian
Panama Papers
Pandora Papers
Chaudhry Moonis Elahi
Pandora Papers
Kenyan President Uhuru Kenyatta Czech Prime Minister Andrej Babis Czech Prime Minister Andrej Babis Stefan Wermuth

Getty Images
Chateau Bigaud
In February
Tony Blair Institute
Global Change
Labour Party
West Midlands
The Pandora Papers
British Virgin Islands
The London
Cherie Blair
Cherie Blair
Middle East
The Blairs
Cherie Blair
Robert Palmer
Tax Justice UK
The Guardian
In June
Paulo Guedes
The Pandora Papers
Dreadnoughts International Group
British Virgin Islands

Homework 8 Review

Revista Piauí	Cayman Islands
In December	South Dakota
Some Bahamian	South Dakota
Latin American	Susan Wismer
South Dakota	Adam Hofri-Winogradow
Dominican Republic	Pandora Papers
Vice President Carlos Morales TroncosoThe Washington Post	
Sioux Falls	Federico Kong Vielman
South Dakota	Kong Vielman
South Dakota	Sioux Falls
South Dakota	Carlos Manuel Arana Osorio
The Pandora Papers	Jackal of Zacapa
South Dakota	Guatemala City
Trident Trust Co	President Jimmy Morales
Sioux Falls	Kong Vielman
South Dakota	Pasion River
Salwan Georges	Nacional Agro Industrial SA
The Washington Post	Kong Vielman
South Dakota	South Dakota
The U	Latin American
New York-based	South Dakota
The U	Guillermo Lasso

The U

South Dakota
South Dakota
South Dakota
Corporate Transparency Act Yehuda Shaffer
The U
Billionaire Erman Ilicak
The Turkish
Rönesans Holding
Recep Tayyip Erdoğan Ayse Ilicak
British Virgin Islands
Pandora Papers
Covar Trading Ltd
Covar Trading
Pandora Papers
The American
Robert F
Robert T
Glenn Godfrey
A U
Neither CILTrust

Nicos Chr
Pandora Papers
Cyprus President Nicos Anastasiades Leonid Lebedev

The Cypriot
Alexander Abramov
President Putin
Theophanis Philippou
Another Russian
Pandora Papers
Konstantin Ernst
Russian TV
Konstantin Ernst
Artyom Geodakyan
Getty Images
The Pandora Papers
Winter Olympics
Mae Buenaventura
Ferdinand Marcos
The Marcos
An ICIJ
Mossack Fonseca

Panama Papers
Jacob Rees-Mogg
British Conservative Party
House of Commons
The Pandora Papers
Mossack Fonseca
Iqbal Memon
New Delhi
Pandora Papers
Juan Andres Donato Bautista
Presidential Commission
Good Government
British Virgin Island
Panama Papers
The Philippines
President Rodrigo Duterte
Alexander Abramov
Countering America
Adversaries Through Sanctions Act

Homework 8 Review

- Question 4:
- using the Perl hash table described in a previous lecture, re-do Question 3 and collect together mentions of named entities, e.g. Baker McKenzie occurs multiple times. Then print names and number of occurrences in tabular form.
- Code:
- perl -le 'use open qw(:std :utf8); open \$f, "pandora.txt"; while (<\$f>) \{while (/\b[A-Z][\w]*((\s+of)? $\backslash \mathrm{s}+[\mathrm{A}-\mathrm{Z}][\backslash \mathrm{w}-] *)+/ \mathrm{g})$ \{\$ne\{\$\&\}++\}\}; for (sort \{\$ne\{\$b\} <=> \$ne\{\$a\}\} (keys one)) \{print "\$_, \$ne\{\$_\}"\}'

Homework 8 Review

South Dakota, 14
Pandora Papers, 13
The Pandora Papers, 13
Baker McKenzie, 6
British Virgin Islands, 6
Panama Papers, 5
Getty Images, 4
The Washington Post, 3
The Guardian, 3
Cherie Blair, 3
Middle East, 3
The U, 3
Mossack Fonseca, 3
Sioux Falls, 3
Kong Vielman, 3
King Abdullah II, 2
King of Jordan, 2

An ICIJ, 2
Latin American, 2
United States, 2
Czech Republic, 2
Konstantin Ernst, 2
Sachin Tendulkar, 2
Alexander Abramov, 2
Al Mawarid Bank, 2
Czech Prime Minister Andrej Babis, 2
The Panama Papers, 2
Pasion River, 1
Mae Buenaventura, 1
Oštro Croatia, 1
Carlos Manuel Arana Osorio, 1
Adam Hofri-Winogradow, 1
Hassan Diab, 1
Iqbal Memon, 1

Jacob Rees-Mogg, 1
Radio France, 1
The Cypriot, 1
Annelle Sheline, 1
A Morgan Stanley, 1
Ayse Ilicak, 1
Najib Mikati, 1
British Virgin Island, 1
Le Desk, 1
Yehuda Shaffer, 1
Nicos Chr, 1
In February, 1
Ihor Kolomoisky, 1
Arab Spring, 1
The Philippines, 1
Artyom Geodakyan, 1
Adversaries Through Sanctions Act, 1

Regex Lookahead and Lookbehind

- We've already seen some zero-width regexs:
- ^ (start of string)
- \$ (end of string)
- \b (word boundary)
- matches the imaginary position between \w\W or $\backslash W \backslash w$, or just before beginning of string if $\wedge \backslash w$, just after the end of the string if $\backslash w \$$
- zero-width because position of match (so far), pos, doesn't change!

1. (?=regex)
2. (?<=regex)
3. (?!regex)
4. (? <! regex)
(lookahead from current position)
(lookbehind from current position)
(negative lookahead)
(negative lookbehind)

Lookahead (and lookbehind)

Lookaround Assertions

Lookaround assertions are zero-width patterns which match a specific pattern without including it in \$\&. Positive assertions match when their subpattern matches, negative assertions match when their subpattern fails. Lookbehind matches text up to the current match position, lookahead matches text following the current match position.

(?=pattern)

A zero-width positive lookahead assertion. For example, $/ \backslash w+(?=\backslash t) /$ matches a word followed by a tab, without including the tab in \$\&
(?!pattern)
A zero-width negative lookahead assertion. For example /foo(?!bar)/ matches any occurrence of "foo" that isn't followed by "bar". Note however that lookahead and lookbehind are NOT the same thing. You cannot use this for lookbehind.

If you are looking for a "bar" that isn't preceded by a "foo", / (?! foo) bar/ will not do what you want. That's because the (?!foo) is just saying that the next thing cannot be "foo"--and it's not, it's a "bar", so "foobar" will match. Use lookbehind instead (see below).

```
/(?<=\t)\w+/
```

(?<=pattern) lookbehind for pattern (?<!pattern) negative lookbehind for pattern

Regex Lookahead and Lookbehind

- Example:

```
1\$s = "_bison __cat snake _dog cat _snake dog";
zwhile (\$s =~ /_( \(\backslash w+\) ) \b \((?=. * \backslash 1 \backslash b) / g)\) \{
3 print "<\$1>\n"
4\}
```

\$perl test. perl looks for a word beginning with _ such that
<cat>
<dog>
(?= ..) means lookahead

Regex Lookahead and Lookbehind

Some restrictions apply:
lookbehind (in most versions of Perl) cannot be of variable length

- From perlretut:
- Lookahead can match arbitrary regexps,
- but lookbehind prior to 5.30 (?<=fixed-regexp) only works for regexps of fixed width, i.e., a fixed number of characters long. Thus $(?<=(\mathrm{ab} \mid \mathrm{bc}))$ is fine, but $(?<=(\mathrm{ab}) *)$ prior to 5.30 is not.

Debugging Perl regex

- (?\{ Perl code \}) can be inserted anywhere in a regex
- can assist with debugging
- Example:

Regex Lookahead and Lookback

- (?<! pattern)

/(?<!bar)foo/

- (*nlb:pattern)
- (*negative_lookbehind:pattern)

A zero-width negative lookbehind assertion. For example /(?<!bar) foo/ matches any occurrence of "foo" that does not follow "bar".

Prior to Perl 5.30, it worked only for fixed-width lookbehind, but starting in that release, it can handle variable lengths from 1 to 255 characters as an experimental feature. The feature is enabled automatically if you use a variable length lookbehind assertion, but will raise a warning at pattern compilation time, unless turned off, in the experimental: :vlb category. This is to warn you that the exact behavior is subject to change should feedback from actual use in the field indicate to do so; or even complete removal if the problems found are not practically surmountable. You can achieve close to pre- 5.30 behavior by fatalizing warnings in this category.

Background

- Background stuff you should familiar yourself with ...
- Predicate-argument structure
- Stanford CoreNLP

Background

Predicate-Argument Structure (typically for verbs)

- Example
- John saw/noticed the javelina
- notice(experiencer, theme) or see(experiencer, theme)
- John noticed that Mary saw the javelina
- notice(perceiver, proposition) $1^{\text {st }}$ argument: subject, $2^{\text {nd }}$ argument: direct object
- the cat chased the mouse
- chase(agent, theme) $1^{\text {st }}$ argument: subject, $2^{\text {nd }}$ argument: direct object
- the mouse was chased by the cat
(passivization)
- *John was jogged for an hour
(*passivization)
- John jogged for an hour
- jog(agent)

Background

- Different representations exist in the literature.
- Simple:
- John saw/noticed the javelina
- notice(experiencer, theme)
- Neo-Davidsonian:
- event (e) \& experiencer(e, John) \& theme $(e$, javelina)

Background

- Framenet
- https://framenet.icsi.berkeley.edu/fndrupal/lulndex
- Words in this frame have to do with a Cognizer adding some Phenomenon to their model of the world.

Lexical Entry notice. v

Frame: Becoming_aware
Definition:
COD: become aware of.

Background

Framenet Examples:

- 420-that-sfin

1. [Cognizerl] soon NOTICED [Phenomenonthat the car was being driven very dangerously].
2. Then off they went but [cognizerl] had NOTICED [phenomenonthat Mrs Taylor was really crying].
3. [cognizerYou] will NOTICE that there is, [Ground in the wording of that letter] , [phenomenon ${ }^{\text {Something curious] . }}$

- 430-sfin

1. NOTICE [phenomenonthe street names] [Ground ${ }^{\text {in }}$ the centre of Bristol] .[Cognizer CNI]
2. [cognizer ${ }^{\text {You] }}$] may NOTICE [phenomenonthat food tastes different when you are pregnant] .
3. `I do n't suppose [cognizeranyone] will even NOTICE [phenomenonyou 're not there].
4. [cognizerNobody] even NOTICED [Phenomenon was in the room !]

- 480-swh

1. On the way [cognizerhe] NOTICED [Phenomenonhow quiet the school seemed] .

- 520-np-vping

1. `Did [cognizeryou] NOTICE [phenomenonany knives] [statelying about] ? "

- 570-np-ppabout

1. `I see [cognizeryou] have NOTICED [Phenomenona certain peculiarity about my appearance .] "

- 570-np-ppat

1. When examining the wound , [cognizer $]$ NOTICED [phenomenona dark area] [Ground $a t$ each end of the cut].
2. [cognizer Users of the main car park at Park Royal] will have NOTICED [phenomenon anew fence] [Groundat the back of the site].
3. Then [cognizerl] NOTICED [PhenomenonAlec] [groundat the other end of the bench] .

Background

Lexical Units:

- chance (across).v, chance (on).v, come (across).v, come (upon).v, descry.v, detect.v, discern.v, discover.v, discovery.n, encounter.v, espy.v, fall (on).v, find (oneself).v, find out.v, find.v, happen (on).v, learn.v, locate.v, note.v, notice.v, observe.v, perceive.v, pick up.v, recognize.v, register.v, spot.v, spy out.v, tell.v
Not present Perception_experience verbs:
- detect.v, experience.n, experience.v, feel.v, hear.v, overhear.v, perceive.v, perception.n, see.v, sense.v, smell.v, taste.v, witness.v
Not present Perception_active verbs:
- admire.v, attend.v, eavesdrop.v, eye.v, feel.v, gape.v, gawk.v, gaze.n, gaze.v, glance.n, glance.v, goggle.v, listen.v, look.n, look.v, observation.n, observe.v, palpate.v, peek.n, peek.v, peep.v, peer.v, savour.v, smell.v, sniff.n, sniff.v, spy.v, squint.v, stare.n, stare.v, taste.n, taste.v, view.v, watch.v

Background

- Unified Verb Index
- https://verbs.colorado.edu/verb-index/vn3.3/

notice	SEE-30.1-1-1, (PropBank), (FN Becoming_aware), (Groupin
Frames	
NP V S	
EXAMPLE	"I saw her bake the cake."
SYNTAX	Experiencer V Stimulus <+OC_bare_inf>
SEMANTICS	Perceive(during(E), Experiencer, Stimulus) in_reaction_to(E, Stimulus)
NP V S_ING	
EXAMPLE	"I saw him laughing."
SYNTAX	Experiencer V Stimulus <+OC_ING>
SEMANTICS	Perceive(during(E), Experiencer, Stimulus) in_reaction_to(E, Stimulus)
NP V S_ING	
EXAMPLE	"I saw their laughing and joking."
SYNTAX	EXPERIENCER V Stimulus <+POSS_ING>
SEMANTICS	Perceive(during(E), Experiencer, Stimulus) in_reaction_to(E, Stimulus)

Background: Propbank

| Roleset id: notice.01, become aware of, Source: , vncls: , framnet: |
| :--- | :--- |
| notice.01: NOTICE-V NOTES: Frames file for 'notice' based on sentences in wsj. Vert |
| 30.1-1. Framed by Katie. (from notice.01-n) NOTICING-N, TAKE_NOTICE-L NOTE |
| Aliases: |
| Alias
 notice (v.) Fram
 notice (n.)
 noticing (n.)
 take_notice (1.)
 Roles:
 Arg0-PPT: noticer (vnrole: 30.1-1-Experiencer)
 Arg1-PAG: noticed (vnrole: 30.1-1-Stimulus) |

- Propbank:
- - ARGn-PAG ... proto-agent
- ARGn-PPT ... proto-patient

Background: Propbank

notice-v; 2 Senses

- Sense Number 1: observe, perceive or become aware of something
- Examples:

Did you notice what he had in his hand?
I noticed that he avoided mentioning her name.
Mary waved at the man but he didn't seem to notice.
Starting in 1987, scientists noticed large drops in the amount of phytoplankton.
Her musical talent was first noticed by the critics at the age of 12.

- Mappings:

VerbNet: see-30.1-1-1
FrameNet: Becoming_aware
PropBank: notice. 01
WordNet 3.0 Sense Numbers: 1, 2, 4

Background: Propbank

notice-v; 2 Senses

- Sense Number 2: bring to attention; give notice or announce
- Examples:

The Solicitor General noticed the court of a change in Justice Department police.
The foundation noticed the Council of the new approach.

- Mappings:

VerbNet: NM
FrameNet: NM
PropBank: NM

Background

Predicate-Argument Structure (typically for verbs)

- Example
- *the librarian put the book
- the librarian put the book on the table
- put(agent, theme, location)
- Mary gave John the textbook
- *Mary gave John
- give(agent, goal, theme)
- Mary gave the textbook to John

Background: Framenet

give:

Core:	
Donor [Donor]	The person that begins in possession of the Theme and causes it to be in the possession of the Recipient .
Recipient [Rec] The entity that ends up in possession of the Theme. Theme [Thm] Semantic Type: Physical_object The object that changes ownership.	

put:

Core:	
Agent [Agt] Semantic Type: Sentient	The Agent is the person (or other force) that causes the Theme to move. The waiter PLACED the food on the table.
Cause [Cause] Excludes: Agent	Grass , which is sown with clover , provides rich pasture for cattle in summer and the clover is another plant which PUTS nitrogen into the soil .
$\begin{aligned} & \text { Goal [Goal] } \\ & \hline \text { Semantic Type: Goal } \end{aligned}$	The FE Goal is the location where the Theme ends up. This FE is profiled by words in this frame. The waiter PLACED the food on the table.
Theme [Thm] Semantic Type: Physical_object	The Theme is the object that changes location during the Placing. The waiter PLACED the food on the table.

Background: CoreNLP

Background: CoreNLP

- Examples (from Framenet):

1. [cognizerl] soon NOTICED [phenomenon the car was being driven very dangerously].
2. Then [cognizerl] NOTICED [phenomenonAlec] [Ground ${ }^{\text {at }}$ the other end of the bench] .

Background: CoreNLP

- Examples (from Framenet):

1. [cognizerl] soon NOTICED [Phenomenon the car was being driven very dangerously] .
2. Then [cognizerI] NOTICED [PhenomenonAlec] [Groundat the other end of the bench] .
```
R00T/VERB(NSUBJ, OBJ)
    noticed(I, Alec)
```


Background: Stanford Dependencies

- Some definitions you may find useful
https://nlp.stanford.edu/software/dependencies manual.pdf
- ccomp: clausal complement

A clausal complement of a verb or adjective is a dependent clause

- dobj: direct object

The direct object of a VP is the noun phrase which is the (accusative) object of the verb.

- iobj: indirect object

The indirect object of a VP is the noun phrase which is the (dative) object of the verb.

- nsubj: nominal subject

A nominal subject is a noun phrase which is the syntactic subject of a clause.

- rcmod: relative clause modifier

A relative clause modifier of an NP is a relative clause modifying the NP. The relation points from the head noun of the NP to the head of the relative clause, normally a verb.

- vmod: reduced non-finite verbal modifier A reduced non-finite verbal modifier is a participial or infinitive form of a verb heading a phrase (which may have some arguments, roughly like a VP).

Background: Universal Dependencies

https://universaldependencies.org/u/dep/index.htm|

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj. obj. iobj.	csubj. ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	advel	advmod* discourse	aux cop mark
Nominal dependents	nmod appos nummod	($\underline{a c l}$		det clf case
Coordination	MWE	Loose	Special	Other
conj CC	fixed flat compound	list parataxis	orphan goeswith reparandum	punct root dep

Background: CoreNLP

- Root: noticed(woman, boy)
- ACL:RELCL points back to NOUN boy
- ACL:RELCL/VERB(NSUBJ/PRON, OBJ)
- We infer saw(boy, girl)

Background: Universal Dependencies

- acl = adnominal clause (basically, a sentence that modifies a noun)

acl : relcl: relative clause modifier

A relative clause modifier of a nominal is a clause that modifies the nominal, whereas the nominal is coreferential with a constituent inside the relative clause (here the constituent may be realized as a relative pronoun, another relative word, or it may not be overtly realized at all). The acl:relcl relation points from the head of the modified nominal to the head of the relative clause.

Depending on language, it may be required that relative clauses are finite. For example, English non-finite clauses are traditionally not termed relative; therefore, the girl that was born today is a relative clause because it is finite, while the girl born today is non-finite (the participle is not accompanied by a finite auxiliary) and it uses the plain acl relation. In other languages however, the distinction between finite and non-finite clauses may not exist or may not be used as a criterion for relative clauses.

