
LING/C SC/PSYC 438/538
Lecture 12

Sandiway Fong

Today's Topics

• Homework 8 (previewed on Tuesday, due Sunday midnight)
• More on Perl regex:
• Perl code inside a regex!
• Character and word frequency counting

• Zipf's Law
• Brown Corpus case study

Pandora Papers
• https://www.icij.org/investigations/pandora-papers/

• An investigation by more than 600 journalists from 150
news outlets has unearthed offshore dealings of 35
current and former world leaders and more than 300
other current and former public officials and politicians
around the world.

• The offshore system continues to thrive despite decades
of legislation, investigations and international agreements
aimed at combating money laundering and tax dodging.

• South Dakota and more than a dozen U.S. states have
become leaders in the business of selling financial secrecy
— even as the U.S. blames smaller nations for enabling
tax avoidance and dirty money flows.

• The Pandora Papers unmask the hidden owners of
offshore companies, secret bank accounts, private jets,
yachts, mansions and artworks by Picasso, Banksy and
other masters.

• The biggest leak in ICIJ history contains 2.94 terabytes of
confidential information from 14 offshore service
providers

https://www.icij.org/investigations/pandora-papers/

Wired Article

• https://www.wired.co.uk/article/
pandora-papers-leak

• In addition, the Pandora Papers included
a broader range of file types and
formatting that the machine learning
systems the ICIJ previously used had to
learn about to be able to parse and
identify in order to be able to sort. “It’s
now able to read very specific financial
documents and very specific PDFs.”

https://www.wired.co.uk/article/pandora-papers-leak
https://www.wired.co.uk/article/pandora-papers-leak

Homework 8

• Background:
• "The Pandora Papers is a leak exposing the secret wealth and dealings of

world leaders, politicians and billionaires."
• Text file (utf-8): pandora.txt
• wc pandora.txt
• 355 6239 39968 pandora.txt
• Let's datamine this for named entities using Perl regex and see

who/what we find!

Homework 8

• What are named entities (NE)?
• person, organization, place name, time expression, monetary value, etc.

• Recall previous lecture slide, we have:
• perl -le 'open $f, "pandora.txt"; while (<$f>) {while
(/regex/g) {print $&}}'

Homework 8

• Question 1a:
• in English, names typically begin with an Upper case letter. Other characters may be

lower/upper case or include a hyphen/dash (-), e.g. ABC-CDE.
• Write a regex and find all the matching words in the article. How many are there?

• Question 1b: last lecture we mentioned use of
• open qw(:std :utf8);
• Find the differences in the words reported when running your code with this

declaration.
• Hint: you may want to think about [A-Za-z-] vs [\w-]

• Question 1c:
• do all name words begin with an Upper case letter? Find two that don't.

Homework 8

• Question 2:
• abbreviations/acronyms often consist of words, #letters ≥2, containing only Upper case letters,

possibly with periods separating them,
• e.g. TV, US, U.S., TASS.
• Write a regex for this. How many are there?

• Question 3:
• many named entities are n-grams, n≥2, a sequence of words:

• e.g. Al Mawarid Bank, British Prime Minister Tony Blair
• each beginning with an Upper case letter, optionally beginning with a title with leading

capitalization:
• e.g. Mr, Mrs, Ms, Mx, Dr, (Prime) Minister, President or King/Queen (of).
• e.g. King of Jordan

• Write a regex and find all the matching sequences (#words ≥2). Print them. How many are there?

Homework 8

Following is optional for 438, mandatory for 538.
• Question 4:
• using the Perl hash table described in a previous lecture, re-do

Question 3 and collect together mentions of named entities, e.g.
Baker McKenzie occurs multiple times. Then print names and
number of occurrences in tabular form, e.g.

Homework 8

• Usual rules:
• due Sunday midnight
• email to me
• 438/538 Homework 8 YOUR NAME
• one PDF file please
• you can attach code separately if you like, but code should ALSO

appear in PDF file!

s/regex/replace/e

A /e will cause the replacement portion to be treated as a full-fledged Perl
expression and evaluated right then and there. It is, however, syntax checked at
compile-time. A second e modifier will cause the replacement portion to be evaled
before being run as a Perl expression.

s/regex/replace/e
• # Add one to the value of any numbers in the string
• s/(\d+)/1 + $1/eg;
• One-liner:
perl -le '$_ = qq/@ARGV/; s/(\d+)/1 + $1/eg; print' 123
234
124 235

s/regex/replace/ee

• The period is a string concatenation operator (cf. Python +):
perl -le '$_=shift; s/((\d+)(.)(\d+))/$2.$1/;print' '3*4'
3.3*4
perl -le '$_=shift; s/((\d+)(.)(\d+))/$2.$1/e;print' '3*4'
33*4
perl -le '$_=shift; s/((\d+)(.)(\d+))/$2.$1/ee;print' '3*4'
132

Character Frequency Counting

• Sample code is rather interesting (e flag):

• Slightly modified but easier to read:

note: lowercase

s/regex/replace/e

• Generally, in regex:
(?{ Perl code })

Character Frequency Counting
$ perl -le '$_ = qq/@ARGV/; s/(.)/$c{$1}++/eg; foreach $k (sort {$c{$b} <=> $c{$a}}
keys %c) {print "$k:$c{$k} "}' this is a sentence to test this program.
:7

t:6

s:5
e:4

i:3

r:2
h:2

a:2

n:2
o:2

g:1
m:1

.:1

p:1
c:1

Steps:
1.$_ = qq/@ARGV/ put the command line arguments into a string $_
2. globally match each character (.) and increment a hash table (%c) count
3. for each key $k in %c (sorted in descending order by value), print

key:value

Character Frequency Counting
perl -ne '{s/(.)/$c{lc($1)}++/eg} END {foreach $k (sort {$c{$b} <=> $c{$a}} keys %c) {print "$k:$c{$k} "}
print "\n"}' 12thnight.txt

12thnight.txt

Note:
• $_ will contain each line of file1
• loop code END post-loop code

Character Frequency Counting

12th Night:
perl -ne '{s/(.)/$c{lc($1)}++/eg} END {foreach
$k (sort {$c{$b} <=> $c{$a}} keys %c) {print
"$k:$c{$k} "} print "\n"}' 12thnight.txt
:99 t:52 e:51 a:45 i:40 o:36 n:33 s:31 h:25

f:16 l:16 r:16 ,:14 d:13 u:12 c:12 g:11 p:9 w:8
m:8 v:8 y:8 b:6 k:4 ':3 .:3 !:3 ::3 ;:2 x:1 q:1

(?{ Perl code })

Perl regex
optimization

No Perl regex
optimization

(?{ Perl code })
• One-liner:

Word Frequency Counting

• Words, including punctuation: \b(\S+?)\b

Zipf's Law
• Zipf's law states that given some corpus of natural language utterances, the

frequency of any word is inversely proportional to its rank in the frequency table.
• See:

• http://demonstrations.wolfram.com/ZipfsLawAppliedToWordAndLetterFrequencies/
• Brown Corpus (1,015,945 words): only 135 words are needed to account for half the corpus.

https://finnaarupnielsen.wordpress.com/2013/10/22/zipf-plot-for-word-counts-in-brown-corpus/

http://www.learnholistically.it/esp-clil/wfk2.htm

On a Log – Log scale:
almost straight line

http://demonstrations.wolfram.com/ZipfsLawAppliedToWordAndLetterFrequencies/
https://finnaarupnielsen.wordpress.com/2013/10/22/zipf-plot-for-word-counts-in-brown-corpus/
http://www.learnholistically.it/esp-clil/wfk2.htm

Brown Corpus

• https://en.wikipedia.org/wiki/Brown_Corpus
• "It contains 500 samples of English-language text, totaling roughly one million

words, compiled from works published in the United States in 1961."

https://en.wikipedia.org/wiki/Brown_Corpus

Brown Corpus

• brown.txt (lines taken from brown.sents() from nltk.corpus)
perl -ne '{s/\b(\S+?)\b/$c{lc($1)}++;/eg} END {@s = sort {$c{$b} <=>
$c{$a}} keys %c; foreach $k (@s[0..99]) { print "$k:$c{$k} " }}'
brown.txt
the:70003 of:36473 and:28935 to:26247 a:23502 in:21422 that:10789
is:10109 ':9865 was:9815 he:9801 for:9500 it:9094 -:8355 with:7290
as:7255 his:6999 on:6765 be:6388 s:6250 i:5932 at:5377 by:5346 this:5146
had:5133 not:4620 are:4394 but:4382 from:4371 or:4226 have:3942
they:3763 an:3751 you:3634 which:3561 one:3504 were:3285 all:3099
her:3036 she:2987 we:2844 there:2844 would:2719 their:2670 him:2619
been:2472 has:2437 when:2331 who:2280 will:2251 t:2246 more:2225 no:2219
if:2198 out:2167 so:2033 up:1974 what:1968 said:1961 can:1942 its:1858
about:1817 than:1796 into:1791 them:1790 only:1748 other:1714 time:1695
new:1646 some:1618 could:1602 these:1573 two:1516 may:1402 first:1389
then:1380 do:1375 man:1364 any:1344 like:1343 my:1319 now:1317 over:1307
such:1303 our:1253 .:1209 me:1185 even:1173 most:1162 made:1147
after:1077 also:1069 did:1044 many:1037 before:1016 must:1015 well:1006
af:1005 back:976 through:974

Brown Corpus

• Using termgraph:
• pip3 install termgraph (Python)
• termgraph [datafile] (two columns: #1 label, #2 value)

• perl -ne '{s/\b(\S+?)\b/$c{lc($1)}++;/eg} END {@s = sort {$c{$b} <=> $c{$a}} keys
%c; foreach $k (@s[0..19]) { print "$k $c{$k}\n" }}' brown.txt | termgraph

the : ▇▇ 70.00K
of : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 36.47K
and : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 28.93K
to : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 26.25K
a : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 23.50K
in : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 21.42K
that: ▇▇▇▇▇▇▇ 10.79K
is : ▇▇▇▇▇▇▇ 10.11K
' : ▇▇▇▇▇▇▇ 9.87 K
was : ▇▇▇▇▇▇▇ 9.81 K
he : ▇▇▇▇▇▇▇ 9.80 K
for : ▇▇▇▇▇▇ 9.50 K
it : ▇▇▇▇▇▇ 9.09 K
- : ▇▇▇▇▇ 8.36 K
with: ▇▇▇▇▇ 7.29 K
as : ▇▇▇▇▇ 7.25 K
his : ▇▇▇▇ 7.00 K
on : ▇▇▇▇ 6.76 K
be : ▇▇▇▇ 6.39 K
s : ▇▇▇▇ 6.25 K

Brown Corpus

perl -ne '{s/\b(\S+?)\b/$c{lc($1)}++;$t++;/eg} END {$t /=2; foreach $k (sort

{$c{$b}<=>$c{$a}} keys %c) {$n++; $t -= $c{$k}; last if ($t<0) }; print "$n\n"}'

brown.txt

122

from the earlier slide:
• http://demonstrations.wolfram.com/ZipfsLawAppliedToWordAndLetterFrequencies/

• Brown Corpus (1,015,945 words): only 135 words are needed to account for half the corpus.

last means terminate the running of foreach loop early
$t total number of words, halved by $t /= 2
$n to count the number of different words ($n++), stop when $t<0

http://demonstrations.wolfram.com/ZipfsLawAppliedToWordAndLetterFrequencies/

Brown Corpus

• In nltk (Natural Language Toolkit):
python -i zipf.py
>>> import nltk
>>> from nltk.corpus import
brown
>>> plot(brown.words())

Brown Corpus

plot([w.lower() for w in brown.words()])

