LING/C SC/PSYC 438/538

Lecture 11
Sandiway Fong

Today's Topics

* Homework 7 note

* The lines of code that changed everything

Getting deeper into Perl regex
* capture

* backreferences
* shortest vs. greedy matching
* nondeterminism (backtracking)

Recall last
lecture: Digital
Advertising

* [f you needed any
more proof of the
absolutely lucrative
nature of Search

tauters @
2h - Q X

CEO of internet search engine company DuckDuckGo testified
rhursday that his company struggled to grow its market share
cause Google was paying key companies billions of dollars to keep
s search engine as the default on computers or mobile devices.

'FUTERS.COM

\ckDuckGo says market share constrained by rival
wgle's huge wallet

Sherman Antitrust Act violation?

*The government has argued that Google, which has some 90% of the search market, illegally paid $10
billion annually to smartphone makers like Apple (AAPL.O) and wireless carriers like AT&T (T.N) and
others to be the default in search on their devices in order to stay on top.

*The clout in search then makes Google a heavy hitter in the lucrative advertising market, boosting its
profits.

*DuckDuckGo has around 2.5% of the online search engine market because it has not been able to win a
default position on devices made by big companies.

Apple won't make a Google searchrival,
says Cue

|3 William Gallagher | Sep 26, 2023

Eddy Cue at the 2014 Code Conference (Source: Re/code)
&

S

y

3

Apple executive Eddy Cue is expected to testify in court that the company has no plan
to make an "Apple Search" engine, because its deal with Google is the best for users.

Most clickbaity

V

What the

class thought

m Mashable = Vox = Slate

ChatGPT

Shared Chat « Default (GPT-3.5)

Analyzing Clickbait Titles

Can you determine whether an article has a clickbait title, based on
the title, and the article content

Yes, | can help analyze an article title and its content to determine if it
exhibits characteristics typical of clickbait.

Clickbait is designed to attract attention and entice visitors to click on
alink to a particular web page. Titles that are clickbait often exhibit

some of these features:

ChatGPT: 6

Factors

W

(6]

(@)}

. Exaggerated or misleading information: If the title makes an

extreme claim that isn't substantiated by the article content, it's
probably clickbait.

. Withholding key information: Titles like "You won't believe what

happened next!" or "This one weird trick..." are designed to make

readers curious, but they don't actually provide specific information.

nn

. Strong emotional appeals: Words like "shocking", "incredible”, or

"horrifying" that are used to evoke strong reactions but aren't

supported by the article's content.

. Listicles with little substance: While not all list articles (listicles) are

clickbait, titles like "10 amazing ways to...” can be if the article doesn't

deliver meaningful content.

. Pop culture references or celebrity names that are irrelevant: If the

title drops a well-known name or current event but doesn't actually
discuss them in depth in the article, it's a sign of clickbait.

Sensationalism: Overhyping mundane information or events.

Interesting read

* https://slate.com/technology/2019/10/consequential-computer-code-software-history.html

future © tense

The Lines of Code That
Changed Everything

Apollo 11, the JPEG, the first pop-up ad, and 33 other bits of
Hello, Worid!) software that have transformed our world.
Date: 1972 or earlier

The phrase that has introduced generations to code

main() { printf("hello, world\n"); }

When you sit down to learn a new programming language, the first thing the tutorial has you do
is get the computer to display the phrase “Hello, world!” Perhaps the most famous early
example comes from a Bell Laboratories memorandum called “Programming in C—A Tutorial,”
writtenin 1974, though it was also found in a 1972 manual for another language, B, and may go
back even earlier than that.

https://slate.com/technology/2019/10/consequential-computer-code-software-history.html

Perl code and History

The Code That Made a T-Shirt lllegal

Date: Circa 1995

Language: Perl

One of the earliest examples of code as activism

#!/bin/perl -s—— —export-a-crypto-system-sig —RSA-3-1lines—PERL
$m=unpack(H. $w, $m."\0"x$w) ,$_="echo "16do$w 2+40i0$d*—"1[d2%Sa

2/d0<X+d*Lal=z\U$n%0]1SX$k" [$mx] \Esz1Xx++p|dc™,s/*. |\W//g, print
pack('Hx',$_)while read(STDIN, $m, ($w=2%$d-1+1length($n)&~1)/2)

Munitions T-Shirt Homepage

“WARNING: This shirt is classified as a munition and may not be exported from the United
States, or shown to a foreign national,” the shirt warned. For a time, the United States
government treated strong encryption like surface-to-air missiles: too dangerous to fall into the
hands of America’s foes. The idea made a kind of sense when encryption lived in heavy,
expensive devices, but alot less sense when the State Department tried to tell cryptography
researchers in the 1990s they couldn’t post their code on the internet. But the RSA encryption
algorithm—one of the basic building blocks of modern cryptography—is elegant enough that it
can be written out in just four dense lines of Perl code ... short enough to fit on a T-shirt. The
original shirts are now collector’s items; the export controls, although not completely gone,
have been substantially pared back. —James Grimmelmann, professor of law at Cornell Tech
and Cornell Law School

Perl code and History

http://www.cypherspace.org/adam/rsa/rsa-details.html

#!/bin/perl —sp0777i<X+d*lMLaA*lN%0]dsXx++1MlN/dsM0<j]dsj
$/=unpack('Hx',$_);$_="echo 16d10\U$k"SK$/SM$n\EsN0p[lN*l
1K[d2 %5a2/d0$~Ixp" |dc” ;s/\W//g;$_=pack('Hx',/((..)*%)$/)

AT A .', ‘\ ’\'v
Oy AANINIANR (s)

s shirt [(lassiﬁcd a5 & Munijti
\y not be exported ffom the (y,, a,,,‘
(ates, o shown to a l,m‘gn et Q

RSA

eacryption in perf

http://www.cypherspace.org/adam/rsa/rsa-details.html

Perl regex: Unicode and \w

\w is [0-9A-Za-z_]
Definition is expanded for Unicode:

use utf8; use pragma: https://perldoc.perl.org/open.html
use open qw(:std :utf8);

my $str = "school école Ecole $ola trudng el Skole 1sosaiu; -

@words = ($str =~ /(\w+)/g); i g

foreach $word (@words) { print "$word\n" } S

bash-3.2% perl regex_utf.perl

school school
école cole
Ecole cole
Sola

truong ola
Tho tr
Skole ng

Tsai58u kole

https://perldoc.perl.org/open.html

Chapter 2: JM

RE Match Example Patterns Matched
\ % an asterisk “*” “K*A*P*L*A*N”
\os a period *.” “Dr. Livingston, I presume™
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab
Some characters that need to be backslashed.

Why is a backslash needed?

* > means zero or more repetitions of the previous char/expr

* . means any single character

* 7 means previous char/expr is optional (zero or one occurrence)

Chapter 2: JM

* Precedence of operators

* Example: Column 1 Column 2 Column 3 ...
« /Column [0-9]+ x/

e« /(Column [0-9]+ *)x/ space
* /house(cat(s|)|)/ (] =disjunction; ? = optional)
* Perl:

* the regex matched by within the pair of parentheses (...) is stored/captured
in global variables $1 (and $2 and so on).

e (?: ..) group but exclude from Sn variable storage

* Precedence Hierarchy: Parenthesis ()

Counters * + 2 {}
Sequences and anchors the "my end$
Disjunction |

Perl regex

* Recall earlier lecture about time?
http://perldoc.perl.org/perlretut.html

extract hours, minutes, seconds

if ($time =~ /(\d\d):(\d\d):(\d\d)/) { # match hh:mm:ss format
$hours = §$1;
Sminutes = $2;
$seconds = $3;

(= N O LR i PUR R
L

(empty if false)

‘ returns 1 (true) or

A shortcut: list context for matching

1. # extract hours, minutes, seconds
2. ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

A

returns a list

Chapter 2: JIM

Backreferences

Closely associated with the matching variables $1 , $2 , ... are the backreferences \1 , \2 ,... Backreferences are
simply matching variables that can be used inside a regexp. This is a really nice feature; what matches later in a

o S/([0_9]+)/<\1>/<}= what does this do?

Backreferences give Perl regexs more expressive power than Finite State Automata (FSA)

The number operator can be used with other numbers. If you match two different
sets of parenthesis, \2 means whatever matched the second set. For example,

/theer they |(.%), the er we \2/

will match The faster they ran, the faster we ran but not The faster they ran, the faster
we ate. These numbered memories are called registers (e.g., register 1, register 2,

Shortest vs. Greedy Matching

» default behavior

* in Perl regex matching:

* take the longest possible matching string

* and see if it works

* if so, ok

* if not, backtrack (take a shorter match and try again)
* aka greedy matching

* This behavior can be changed, see next slide

Shortest vs. Greedy Matching

from http://www.perl.com/doc/manual/html/pod/perlre.html

(.%?)
* Example: (%)

$_ = "The d 1s under the bar in the barn.";
if (/foo(.*?)bar/) {
print ”matched <$1>\n";

+

* Output:
* greedy (.*): matched <d is under the bar in the >
* shortest (.*?): matched <d is under the >

* Notes:

« ? immediately following a repetition operator like * (or +) makes the operator work in
non-greedy mode

* + immediately following a repetition operator makes it non-backtracking greedy

http://www.perl.com/doc/manual/html/pod/perlre.html

Regex: exponential time

* Regex search is supposed to be fast

* but searching is not necessarily proportional to the length of the string (or
corpus) being searched

* in fact, Perl RE matching can can take exponential time (in length)

exponential

time linear fime
length length

* hon-deterministic

* may need to backtrack (revisit last choice point) if it matches incorrectly part of
the way through

* Let's consider a?a?a?aaa matching against the string aaa

Regex: exponential time

* Consider a7a?a?aaa matching against the string aaa
* For expository purposes: a; a, a;
* red a =failure to match (causes backtracking)

Tries:

a,?a,?a,?7aaa
a,?a,? ?a;aa
a,? ?a, ?a;aa
a,? ? ?0,0;a
?a,?7a0,?0;aa
?a,?7 7?0,0;a
? ?a,?70,0;a

O N O A W R

Perl implementations

* Now consider scalingup a?a?a?aaa, i.e. (a?)"a" matching against a"

o o togestonte * perl 5, version 28, subversion 3
Perl: Apple Silicon vs. Intel (v5.28.3) built for darwin-thread-multi-
2level
» /opt/local/bin/perl: Mach-0O 64-bit
executable x86_64

e perl 5, version 34, subversion 1
(v5.34.1) built for darwin-thread-multi-
2level

» /opt/local/bin/perl: Mach-0O 64-bit
executable arm64

nds
S

log
scale

Number of secol

Reference:
https://swtch.com/~rsc/regexp/regexpl.html

0.01

n in (a?){n}a{n}

https://swtch.com/~rsc/regexp/regexp1.html

Regex: exponential time

* regex(a?)"a" matching against a" for a range of values for n
time perl —-e '$n = shift; $na = "a" x $n; print $na =~ /(a?){$n}a{$n}/"' 25
real Om3.201s
user 0m3.190s

Sys 0m@.007/s
* Note:
« shift defaults to working on @ARGV, that's how $n gets 25 above.

shift ARRAY
shift

Shifts the first value of the array off and returns it, shortening the array by 1 and moving everything down. If there are no elements in
the array, returns the undefined value. If ARRAY is omitted, shifts the @ array within the lexical scope of subroutines and formats,
and the @ARGV array outside a subroutine and also within the lexical scopes established by the eval STRING, BEGIN {}, INIT

