408/508 Computational

Techniques for Linguists

Today's Topics

a note on file permissions
bc (command)

a note on positional parameters

> w N

Homework 4
* a shell script program for you to write

Running shell scripts

Chmod 644 el

Owner Rights (u) Group Rights (g) Others Rights (o)

Read (4) 1 1 1

Write (2) af O 0 0O 0

Execute (1) o0 o O O 0
Command:

« chmod permissions filename
- permissions: e.g.u+x (user add execute) or a number

Recall everything is binary:
* 110=6,100=4
* 644 =110100100 (3 groups of binary)

Shell Arithmetic: use command bcC instead

* shell arithmetic, e.g. ((z= x+y)), isinteger only.
* What if you needed floating point numbers?

be(1) man bc command brings up this page

NAME * bcC runs interactively
bc - An arbitrary precision calculator language e bc =1 loadsthe math Iibrary first

SYNTAX
bc [-hlwsqv] [long-options] [file ...]

VERSION
This man page documents GNU bc version 1.06.

DESCRIPTION
bc is a language that supports arbitrary precision numbers with inter-
active execution of statements. There are some similarities in the
syntax to the C programming language. A standard math library is
available by command line option. If requested, the math 1library is

command bcC

* Examples:
* we know tan(r/4) = 1, so tan'}(1) = /4 (/4 in radians = 45°)
e function a(radians) computes arctan when bc -1 is used
* Control-D (EOF) to exit bc

Machine$ bc -1

bc 1.06

Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.

For details type “warranty'.

a(1)
.78539816339744830961
a(1)x*4
3.14159265358979323844
ADMachine$ [

* using echo and pipe into bc

(base) ~$ echo "4x5" | bc
20

command bcC

* Example:
* we know tan(rt/4) = 1, so tan'}(1) = /4 (/4 in radians = 45°)
« function a (radians) computes arctan when bc -1 is used

* From man bc:

* the following [Terminal command] will assign the value of "pi" to the shell
variable pi.

[(base) ~$ pi=$(echo "scale=10; 4*xa(1)" | bc -1)

[(base) ~$ echo $pi
3.1415926532

S(command) is a modern synonym for ‘command’ (" is backtick, not ') which stands for
command substitution; it means run command and put its output here (see next slide).

command bcC

https://www.gnu.org/software/bash/manual/html node/Command-Substitution.html#Command-Substitution

3.5.4 Command Substitution

Command substitution allows the output of a command to replace the command itself.
enclosed as follows:

$(command) | pi=$(echo "scale=10; 4x*a(l)" | bc -1)

or

* command" pi="echo "scale=10; 4*a(1)" | bc -1

(base) ~$ pi="echo "scale=10; 4%a(1)" | bc -1°
(base) ~$ echo $pi

3.1415926532

https://www.gnu.org/software/bash/manual/html_node/Command-Substitution.html

command bcC

e https://www.gnu.org/software/bash/manual/html node/Bash-Builtins.html#index-echo
echo

echo [-neE] [arg ..]

Output the args, separated by spaces, terminated with a newline.

pi=$(echo "scale=10; 4xa(1)" | bc -1)
‘ send string as a file of
one line as input to bc

\ 4

https://www.gnu.org/software/bash/manual/html_node/Bash-Builtins.html

command bcC

[Machine$ pi=$(echo "scale=10; 4xa(1)" | bc -1)

(Machine$ echo $pi
3.1415926532

e piisabash shell variable here

[Machine$ echo "scale=10; 4xa(1)" | bc -1 > pi.txt
[Machine$ more pi.txt

3.1415926532

pi.txt (END)

e spacebar to get outof more

command bcC

* scale variable in bc:

There are four special variables, [X¥IR3, ibase, obase, and last.
defines how some operations use digits after the decimal point. The
default value of is 0. ibase and obase define the conversion base

for input and output numbers. The default for both input and output is
base 10. 1last (an extension) is a variable that has the value of the
last printed number. These will be discussed in further detail where

command bcC

ADMachine$ bc -1
bc 1.06

° Scale Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty'.
[scale = 100
[a(1)*4
3.141592653589793238462643383279502884197169399375105820974944592307\
8164062862089986280348253421170676
scale = 1000
[a(1)*4
3.141592653589793238462643383279502884197169399375105820974944592307\
81640628620899862803482534211706798214808651328230664709384460955058\
22317253594081284811174502841027019385211055596446229489549303819644\
28810975665933446128475648233786783165271201909145648566923460348610\
45432664821339360726024914127372458700660631558817488152092096282925\
40917153643678925903600113305305488204665213841469519415116094330572\
70365759591953092186117381932611793105118548074462379962749567351885\
75272489122793818301194912983367336244065664308602139494639522473719\
07021798609437027705392171762931767523846748184676694051320005681271\
45263560827785771342757789609173637178721468440901224953430146549585\
37105079227968925892354201995611212902196086403441815981362977477130\
99605187072113499999983729780499510597317328160963185950244594553469\
08302642522308253344685035261931188171010003137838752886587533208381\
42061717766914730359825349042875546873115956286388235378759375195778\
18577805321712268066130019278766111959092164201988

Math constant e

2.71828182845904523536028747135266249775724709369995 |
scale=51

e(1)
2.718281828459045235360287471352662497757247093699959 |

2.71828182845904523536028747135266249775724709316999595

I

lOO DeCimCII DIgI‘I’S https://www.mathsisfun.com/numbers/e-eulers-number.html

Here is e to 100 decimal digits:

2.718281828459045235360287471352662497757247093E9995957
49669676277240766303535475945713821785251664274...

https://www.mathsisfun.com/numbers/e-eulers-number.html

command bcC

bc 1.06 .
Copyright 1991-1994, 1997, 1998, 200@ Free Software Foundation, Inc. [OISL{OJVIMFEN=N{elsEH=IAZISE Ik

This is free software with ABSOLUTELY NO WARRANTY.
For details type “warranty'.

* obase=2 (binary)

 obase=16 (hexadecimal)
0.9,A..F

* Recall: control-D to exit

Positional Parameters

* Inside a shell script, these variables have
values:
« $1: first parameter
« $2: 2" parameter and so on...
o $#: # of parameters

* Program on webpage test. sh:
#1/bin/bash
echo "Number of parameters: $#"
if [$# -eq 1]; then

echo "1st parameter: $1"
fi

* Qutput:
« bash test.sh
Number of parameters: 0
« bash test.sh 45
Number of parameters: 1
1st parameter: 45
« bash test.sh 45 56
Number of parameters: 2

or do chmod u+x test.sh
Run using: . /test.sh

If-test

test2.sh * Spaces are important!
1#!/bin/bash

2echo "Number of parameters: $#"
3if [$# -eq 1]; then

4 echo "1lst parameter: $1"
5fi

$ bash test2.sh 1 2
Number of parameters: 2
test2.sh: line 3: [2: command not found

$

If-test

 Note the spaces betweenthe [..] !

[FILE1 -nt FILE2]

[True if FILE1 has been changed more recently than FILE2, or if FILE1 exists and FILE2 doe:

Primary Meaning

[-a FILE] True if FILE exists. [FILE1 -ot FILE2] [True if FILE1 is older than FILE2, or is FILE2 exists and FILE1 does not.

[-b FILE] [True if FILE exists and is a block-special file. [FILE1 -ef FILE2] [True if FILE1 and FILE2 refer to the same device and inode numbers.

[-c FILE] rue if FILE exists and is a character-special file. [-o OPTIONNAME] True if shell option "OPTIONNAME" is enabled.

[-d FILE] [True if FILE exists and is a directory. [-z STRING] [True of the length if "STRING" is zero.

[-e FILE] [True if FILE exists. { -n STRING Jor [True if the length of "STRING" is non-zero.

[-£ FILE] [True if FILE exists and is a regular file. STRING]

[-grmE] [True if pruE exists and its SGID bit is set. [Silel‘ll](\f"vCZ;l] = True if the strings are equal. "=" may be used instead of "=="for strict POSIX compliance.
[-h FILE] [True if FILE exists and is a symbolic link.

[-k FILE] rue if FILE exists and its sticky bit is set. [S'?'mgl] = True if the strings are not equal.

[-p FILE] [True if FILE exists and is a named pipe (FIFO).

[-r FILE] [True if FILE exists and is readable. 5 STRING1 < STRINGZ [True if "STRING1" sorts before "STRING2" lexicographically in the current locale.
[-s FILE] [True if FILE exists and has a size greater than zero.

[-tFD] True if file descriptor Fp is open and refers to a terminal. g STRING1> STRING2 e if "STRING1" sorts after "STRING2" lexicographically in the current locale.
[-uFrLE] [True if r1ve exists and its SUID (set user ID) bit is set. "OP" is one of -eq, -ne, -1t, -1e, -gt Or -ge. These arithmetic binary operators return true
[-wFILE] rue if FILE exists and is writable. [IARG] OF ARGZ | "ARG2", respectively. "ARG1" and "ARG2" are integers.

[-x FILE] rue if FILE exists and is executable.

[-0 FILE] True if FILE exists and is owned by the effective user ID.

[-G FILE] True if FILE exists and is owned by the effective group ID.

[-L FILE] [True if FILE exists and is a symbolic link.

[-NFILE] True if FILE exists and has been modified since it was last read.

If-test

* https://www.gnu.org/software/bash/manual/bash.html

* if [[condition]] (newer test: older [...] suppported)

[[.]]
[[expression 1]

Return a status of 0 or 1 depending on the evaluation of the conditional expression expression.
Expressions are composed of the primaries described below in Bash Conditional Expressions. The words
between the [[and 1] do not undergo word splitting and filename expansion. The shell performs tilde
expansion, parameter and variable expansion, arithmetic expansiory, command substitution, process
substitution, and quote removal on those words (the expansions tjiat would occur if the words were

enclosed in double quotes). Conditional operators such as ‘~f’ phust be unquoted to be recognized as

primaries.

1#!/bin/bash

2echo "Number of parameters: $#"

3if [[$# -eq 1 && $1 -1t 10 [|]; then
4 echo "1st parameter: $1"

5fi

see previous slide, plus pattern matching, e.g. regex =~

[S#-eq1&&S1-1t10])vs. [SH-eq1] &&[S$S1-1t10]

$ bash test3.sh 1
Number of parameters: 1
1st parameter: 1

$ bash test3.sh 10
Number of parameters: 1

$

https://www.gnu.org/software/bash/manual/bash.html

Homework 4

* Let’s write a simple shell-script BMI calculator
* solicit input from the terminal (using read) or from the command line ($1 $2)

Me_asurement Formula and Calculation

Units

Kilograms Formula: weight (kg) / [height (m)]2

and meters

(or With the metric system, the formula for BMI is weight in

centimeters) kilograms divided by height in meters squared. Since
height is commonly measured in centimeters, divide height
in centimeters by 100 to obtain height in meters.

try the metric
Example: Weight = 68 kg, Height = 165 cm (1.65 m) y)
Calculation: 68 + (1.65)2 = 24.98 one first

Pounds and Formula: weight (Ib) / [height (in)]2 x 703
inches

Calculate BMI by dividing weight in pounds (Ibs) by height
in inches (in) squared and multiplying by a conversion
factor of 703.

Example: Weight = 150 Ibs, Height = 5'5" (65")
Calculation: [150 + (65)2] x 703 = 24.96

Homework 4

* You can use if-test, bc (from this lecture), and shell scripting to build
your program
» Submit your shell script and screenshots of your runs

* To get you started, let's play on the command line first:
* your instructor weights 72kg and is 1.72 meters tall

e ((bmi =72/ (1.72 x 1.72)))
e echo $bmi

* won't work: why?

Homework 4

* One approach is to scale height in cm instead of meters:
« ((bmi =72 / (172 % 172)))
« echo $bmi

* how to scale it if we use cm instead of m?
* 100 cm in a meter, multiply by what?

Homework 4

* Instead of scaling to integer, we could pipe numbers to bc directly:

[(base) 1ing508-22% echo "72 / (1.72 % 1.72)" | bc
24

e Or use variables:

[(base) 1ing508-22% weight=72
[(base) 1ing508-22% echo $weight
72

[(base) 1ing508-22% height=1.72
[(base) 1ing508-22% echo $height

1.72

[(base) 1ing508-22% echo "$weight / ($height * $height)" | bc
24

(base) 1ing508-22% ||

Homework 4

» After you figure out how to do on the command line, put it
in a shell script, and try to add the following three
embellishments:

1. accept either command line arguments or read from the
terminal if they’re missing

2. recall read —p "Enter : " variablename
« if [$# —-ne N]; then
* N = number of command line arguments.

Homework 4

2. print the weight status message according to the following table:

3. modify the calculator to accept input in both metric and
traditional units

* make sure you supply examples of your program working!

[(base) 1ing508-22$% chmod u+x hw4.sh

. [(base) 1ing508-22% ./hwé4.sh
BMI Weight Status weight in kg (1lbs): 72

height in cm (in): 172 read -p
units kg/lbs: k
24,33

Below 18.5 Underweight

18.5 - 24.9 Normal

normal

[(base) 1ing508-22% ./hw4.sh 74 172 kg

25.0 - 29.9 Overweight 25.01

overweight
30.0 and Above Obese (base) 1ling508-22% |

Homework 4

* Instructions:
* email sandiway@arizona.edu
* submit everything in one PDF file!
* subject of email: 408/508 Homework 4 your name
e cite any discussion or source
* due date: next Sunday by midnight

