
408/508 Computational
Techniques for Linguists

Lecture 7

Today's Topics

•Homework 3 review
• Step-by-step Bash shell exercises

• Other things we can 'pipe' (|) into our workflow:
• tail
• awk
• termgraph

• a note on file permissions

Windows into WSL2 (Ubuntu)

Lecture 4:
can access your Windows C: drive
(from within Ubuntu) via directory /mnt/c

Homework 3: Exercise 1 Review

• Relevant bit:
• The wc utility displays
the number of lines,
words, and bytes

Homework 3: Exercise 1 Review

5. What's the wc option that prints the number of words
only? Try it.

Homework
3: Exercise
1 Review

nano text.txt
Type Control-G
Type Alt-D

Homework 3:
Exercise 1 Review

• Meta-key sequences are
notated with M-
• Alt, Cmd or Esc key

Homework 3:
Exercise 1
Review

•M-D

Homework 3:
Exercise 2
Review
• Let's use the Terminal to

make a frequency list of
the words in
text.txt
• First, look at the

manpage for command
tr.

Homework 3:
Exercise 2
Review

• First, look at the manpage for
command tr.

• Next, let's replace all the punctuation
characters by spaces.

• Observe the output of (either):
• cat text.txt | tr '[:punct:]'
' '

• cat text.txt | tr -d
'[:punct:]'

Homework 3: Exercise 2 review

• Next, let's replace all the punctuation characters by spaces.
1. Observe the output of both commands below. Which command do we

want?
• cat text.txt | tr '[:punct:]' ' '
• cat text.txt | tr -d '[:punct:]'

Homework 3: Exercise 2 Review
2. Next, we can put each word on a separate line using:

• tr ' ' '\n'
• Note 3: \n stands for a newline character.

$ cat text.txt | tr '[:punct:]' ' ' | tr ' ' '\n' | pr –t4

Homework 3: Exercise 2 Review

4. Let's make a table of the frequency counts for each word using:
• sort | uniq -c

cat text.txt | tr '[:punct:]' ' ' | tr ' ' '\n' | sort | uniq -c | pr -t4

Recall ASCII table: A-Z comes before a-z.

Homework 3: Exercise 2
NAME
 uniq – report or filter out repeated lines in a file

SYNOPSIS
 uniq [-c | -d | -D | -u] [-i] [-f num] [-s chars] [input_file [output_file]]

DESCRIPTION
 The uniq utility reads the specified input_file comparing adjacent lines, and writes a

 copy of each unique input line to the output_file.
 The second and succeeding copies of identical adjacent input lines are not written.
 Repeated lines in the input will not be detected if they are not adjacent, so it may be
 necessary to sort the files first.
 The following options are available:
 -c, --count
 Precede each output line with the count of the number of times the line
 occurred in the input, followed by a single space.

Homework 3:
Exercise 2
Review

6. Let's put the results in
sorted order of frequency
(descending) by appending:
• sort –rn

Homework 3: Exercise 2 Review
NAME

 sort – sort or merge records (lines) of text and binary files

SYNOPSIS
 sort [-bcCdfghiRMmnrsuVz] [-k field1[,field2]] [-S memsize] [-T dir] [-t char] [-o

 output] [file ...]

DESCRIPTION
 The sort utility sorts text and binary files by lines.

 -n, --numeric-sort, --sort=numeric
 Sort fields numerically by arithmetic value. Fields are supposed to have
 optional blanks in the beginning, an optional minus sign, zero or more
 digits (including decimal point and possible thousand separators).
 -r, --reverse
 Sort in reverse order.

A step beyond Homework 3

Let's graph our homework result!
• There's something called termgraph (written in Python) but you can

use it on the command line
• Assume you have python3 already installed
• Check whether it's already installed

• which termgraph
• /Users/sandiway/opt/anaconda3/bin/termgraph

• if not:
• pip3 install termgraph

termgraph install

$ which termgraph (no response means can't find the command)
$ pip3 install termgraph
Collecting termgraph
 Downloading termgraph-0.5.3-py3-none-any.whl (15 kB)

Collecting colorama
 Downloading colorama-0.4.5-py2.py3-none-any.whl (16 kB)

Installing collected packages: colorama, termgraph
Successfully installed colorama-0.4.5 termgraph-0.5.3
$ which termgraph
/opt/miniconda3/bin/termgraph

termgraph install

• It may place the executable in a directory that's not in your PATH.
• If so:

• export PATH=/home/yourname/.login/bin:$PATH
• will prepend /home/yourname/.login/bin to your PATH
• and which termgraph should now work

• To make the change permanent, you can add this line to your startup
file, either .bashrc or .bash_profile in your home directory (depending
on which one exists)
• cd (goto home)
• nano .bashrc (save change and exit)

termgraph

• Google termgraph
• https://github.com/mkaz/termgraph

https://github.com/mkaz/termgraph

termgraph
cat text.txt | tr '[:punct:]' ' ' | tr ' ' '\n' | sort | uniq
-c | sort -rn | tail –n +2 | awk '{print $2, $1}' | termgraph

ASCII graphics!

tail –n +2
NAME

 tail – display the last part of a file

SYNOPSIS
 tail [-F | -f | -r] [-q] [-b number | -c number | -n number] [file ...]

DESCRIPTION
 The tail utility displays the contents of file or, by default, its standard input,
 to the standard output.

 Numbers having a leading plus (‘+’) sign are relative to the beginning of the
 input, for example, “-c +2” starts the display at the second byte of the input.
 Numbers having a leading minus (‘-’) sign or no explicit sign are relative to the
 end of the input, for example, “-n 2” displays the last two lines of the input.

 -n number, --lines=number
 The location is number lines.

tail –n +2
cat text.txt | tr '[:punct:]' ' ' | tr ' ' '\n' | sort | uniq -c | sort -rn
 86
 18 the
 11 a
 9 she
 9 of
 8 was
 8 to
 7 her

+2

awk '{print $2, $1}'
NAME
 awk - pattern-directed scanning and processing language

SYNOPSIS
 awk [-F fs] [-v var=value] ['prog' | -f progfile] [file ...]

DESCRIPTION
 Awk scans each input file for lines that match any of a set of patterns
 specified literally in prog or in one or more files specified as -f progfile.
 With each pattern there can be an associated action that will be performed when
 a line of a file matches the pattern.

 A pattern-action statement has the form:
 pattern { action }
 A missing { action } means print the line; a missing pattern always matches.

 The print statement prints its arguments on the standard output
 { print $2, $1 }
 Print first two fields in opposite order.

tail –n +2
cat text.txt | tr '[:punct:]' ' ' | tr ' ' '\n' | sort | uniq -c | sort
–rn | awk '{print $2, $1}' | termgraph
 86
 18 the
 11 a
 9 she
 9 of
 8 was
 8 to
 7 her

+2 the 18
a 11
she 9
of 9
was 8
to 8
her 7
and 7

awk '{print $2, $1}'

Mrs. Dalloway
The : ▇▇ 3.18 K
And : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.83 K
Of : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.54 K
SHE : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.53 K
To : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.48 K
A : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.36 K
WAS : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.26 K
HER : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.25 K
HE : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.18 K
In : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1.13 K
Had : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 919.00
It : ▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 902.00
THAT: ▇▇▇▇▇▇▇▇▇▇ 686.00
With: ▇▇▇▇▇▇▇▇▇ 573.00
For : ▇▇▇▇▇▇▇▇ 529.00
His : ▇▇▇▇▇▇▇ 501.00
But : ▇▇▇▇▇▇▇ 489.00
On : ▇▇▇▇▇▇▇ 446.00
At : ▇▇▇▇▇▇ 442.00
HIM : ▇▇▇▇▇▇ 426.00

The 3181
And 1835
Of 1540
SHE 1534
To 1476
A 1363
WAS 1261
HER 1254
HE 1179
In 1130
Had 919
It 902
THAT 686
With 573
For 529
His 501
But 489
On 446
At 442
HIM 426

The spirit of Unix (Linux)

wc
sort
uniq
tr
tail
cat
echo
pr

Running shell scripts

Command:
• chmod permissions filename
• permissions: e.g. u+x (user add execute) or a number
Recall everything is binary:
• 110 = 6, 100 = 4
• 644 = 110100100 (3 groups of binary)

1
1
0

1
0
0

1
0
0

number

