
408/508 Computational
Techniques for Linguists

Lecture 6

Today's Topics

• cat command
• Shell scripting
• writing a program using an editor and running it!

•Homework 3 (due Sunday midnight)
• Step-by-step Bash shell exercises

cat command

• See http://www.linfo.org/cat.html
1. cat file1 (print contents of file1)
2. cat file1 > file2 (‘>’ = redirect output to file2)
3. cat file2 | more (‘|’ = pipe output to command more)
4. more file1 – easier (stops at screen bottom, space to show more)
5. less file1 – easier (allows page up/down keys)
6. cat > file1 (create file1, input from terminal until Control-D EOF)
7. cat (weird! input from terminal goes to terminal)
8. cat >> file1 (append input from terminal to file file1)
9. cat file1 > file2 (file copy)
10. cp file1 file2 – easier (cp = copy)
11. cat file1 file2 file3 (prints all 3 files in order)
12. cat file1 file2 file3 > file4 (prints all 3 files to file4)
13. cat file1 file2 file3 | sort > file4 (3 files sorted alphabetically to file4)
14. cat – file5 > file6 (‘-’ = input from terminal)
15. cat file7 - > file8

http://www.linfo.org/cat.html

Shell program

~$ for ((i=1; i<=10; i=i+2)); do echo "$i by 2"; done
1 by 2
3 by 2
5 by 2
7 by 2
9 by 2 macOS

{1..10..2} means range from 1 to 10 incrementing by 2
; (semicolon) or newline terminates/separates statements

echo means
print

Input

• At a terminal:
• read –p "Name: " name
• read –p "Enter X and Y: " x y
• echo $x
• echo $y

Shell script

• Use nano to create a new file named script.sh (convention .sh for script filetype):
• nano script.sh

• Enter:

• Run it!

• ./script.sh means run the script in file script.sh in the current directory (.)
• chmod u+x filename means add (+) execute (x) permission for user (u) to filename

Comparison operators

• Format:
if [$x OP $y]; then
 …
(else/elif…)
fi
• [….] is known as test
• OP:

• -eq equals
• -ne not equals
• -gt greater than
• -ge greater than or equals
• -lt less than
• -le less than or equals

• Examples:
• echo $x $i
2 5
• test $x -le $i
• echo $? (exit status)
0

• test $x -le $i -a $i -lt
$x

• echo $?
1

Shell script 2

• using the same approach as in the first shell script …

• Beware of execute permissions!

Note: typo, this should read
#!/bin/bash

Note: not shown here
chmod u+x script2.sh

Shell script 2

Compare these two files:
• newlines sometimes

matter
• ; separator must be

used in some cases
• if condition; then
vs.
• if condition
• then
see also ; fi

Homework 3: Exercise 1

1. Download file text.txt from the course website
• Use browser and save file as plain text

2. Check to see the file exists in your directory in the Terminal

1842 bytes in size

Homework 3:
Exercise 1

wc is a useful command.
Do man wc to see the

manual page (manpage).

Homework 3: Exercise 1

4. Try wc text.txt. Find out from the manpage what the three
numbers reported mean. Screenshot it.

5. What's the wc option that prints the number of words only? Try it.

Homework 3: Exercise 1

6. nano text.txt. Type Control-G in the text editor to see the help
text. Scroll down and find the command for counting number of
words, lines and characters? What is that command and how do
you type it? What is reported? Screenshot it.
• You can type Control-X or Control-G to go back to displaying text.txt
• Compare your answer with that obtained in 5.

Homework 3: Exercise 2

• Let's use the Terminal to make a frequency list of the words in
text.txt
• First, look at the manpage for command tr.
• Next, let's replace all the punctuation characters by spaces.
1. Observe the output of both commands below. Which command do

we want?
• cat text.txt | tr '[:punct:]' ' '
• cat text.txt | tr -d '[:punct:]'
• Note 1: pipe ('|') sends the output of the cat command as input to the next

command tr.

note: a space here

Homework 3: Exercise 2

• Note 2: we can redirect ('>') the output of the above command into a file, e.g.
text2.txt, as follows:

• command > text2.txt

2. Next, we can put each word on a separate line using:
• tr ' ' '\n'
• Note 3: \n stands for a newline character.

3. Combine the previous two steps (1 & 2) together.
• Note 4: you can use text2.txt (if you saved the output), or just chain the

command onto the end, i.e. do:
• command | tr ' ' '\n'

Homework 3: Exercise 2

• Next, look at the manpage for command uniq.
4. Let's make a table of the frequency counts for each word using:

• sort | uniq -c

• by running the above command on the output of Step 3 above.
• Note 5: you can chain this command as mentioned earlier, or save the output

of step 4 into another file, e.g. text3.txt. Example:
• command | sort | uniq -c

5. Why do we sort first? Read the uniq manpage to find out.

Homework 3: Exercise 2

6. Let's put the results in sorted order of frequency (descending) by
appending:
• sort –rn

• to our list of commands so far (step 4 above).
• Be sure to chain it using the pipe ('|').
• consult the sort manpage to find out what the options –r and –n above do.

• Show your output.

Instructions

• Email to sandiway@arizona.edu
• By Sunday midnight (will be graded on Monday)
• SUBJECT: 408/508 Homework 3: YOUR NAME
• PDF file please, screenshots should be inside, not separate

attachments
• (do not submit Word .docx or .doc files)

mailto:sandiway@arizona.edu

