408/508 Computational

Lecture 10

Techniques for Linguists

Last Time

» Usefulness of (filename) expansion on the command line

* to rename files:
e mv "$filename" "${filenameSsuffixrnewsuffix"
* e.g. JPG to jpg - ;
|
* to backup files:
« for file in f{1..3}.jpg; do cp $file $file.bak; done

Good

Resource:
Bash chea
sheet

Parameter expansions

Basics

name="John"
echo ${name}
echo ${name/J/j} #=
echo ${name:0:2} #=.

> "john" (substitution)
>

#=> "Jo" (slicing)
>
>

"Jo" (slicing)

echo ${name::2} #

echo ${name::-1} #=> "Joh" (slicing)

echo ${name:(-1)} #=> "n" (slicing from righ
t)

echo ${name:(-2):1} #=> "h" (slicing from righ
t)

echo ${food:-Cake} #=> $food or "Cake"

length=2
echo ${name:0:length} #=> "Jo"

See: Parameter expansion

STR="/path/to/foo.cpp"

echo ${STR%.cpp} # /path/to/foo
echo ${STR%.cpp}.0 # /path/to/foo.o
echo ${STR%/*} # /path/to

echo ${STR##*.} # cpp (extension)
echo ${STR##*/} # foo.cpp (basepath)

echo ${STR#*/} # path/to/foo.cpp
echo ${STR##*/} # foo.cpp

echo ${STR/foo/bar} # /path/to/bar.cpp

STR="Hello world"
echo ${STR:6:5} # "world"
echo ${STR: -5:5} # "world"

SRC="/path/to/foo.cpp"
BASE=${SRC##*/} #=> "foo.cpp" (basepath)
DIR=${SRC%$BASE} #=> "/path/to/" (dirpath)

Substitution
${FOO%suffix} Remove suffix
${Foo#prefix} Remove prefix
${FoO%%suffix} Remove long suffix
${Foo##prefix} Remove long prefix
${F00/from/to} Replace first match
${F00//from/to} Replace all
${F00/%from/to} Replace suffix
${F00/#from/to} Replace prefix
Length
${#F00} Length of $Fo0

Default values

${F00: -val} $F00, or val if unset (or null)
${F00:=val} Set $F00 to val if unset (or null)
${F00:+val} val if $F00 is set (and not null)
${F00:?message} Show error message and exit if

$FO00 is unset (or null)

Omitting the : removes the (non)nullity checks, e.g.
${F00-val} expands to val if unset otherwise $F00.

Comments

Single line comment

This is a
multi line
comment

Substrings

${F00:0:3}

${F00: (-3):3}

Manipulation

STR="HELLO WORLD!"
echo ${STR,} #=>
st letter)

echo ${STR,,} #=>
se)

STR="hello world!"
echo ${STR"} #=>
st letter)

echo ${STR\"\} #=>
se)

Substring (position, length)

Substring from the right

"hELLO WORLD!" (lowercase 1

"hello world!" (all lowerca

"Hello world!" (uppercase 1

"HELLO WORLD!" (all upperca

https://devhints.io/bash

Today's Topics

* Final lecture on bash
* we start again with something more friendly next week

* Four exercises today:
1. deleting files

2. double-spacing a file
3. removing blank lines from a file
4

. find with sed example

Exercise 1: deleting files - rm

* Man rm

NAME

rm - remove files or directories

SYNOPSIS

rm [OPTION]... [FILE]...

DESCRIPTION

This manual page documents the GNU version of rm. rm removes each specified file. By

default, it does not remove directories.

If the -I or --interactive=once option is given, and there are more than three files or
the -r, -R, or —-recursive are given, then rm prompts the user for whether to proceed with

the entire operation. If the response is not affirmative, the entire command is aborted.

Otherwise, if a file is unwritable, standard input is a terminal, and the -f or --force

i

option 1is not given, or the or --interactive=always option is given, rm prompts the
user for whether to remove the file. If the response is not affirmative, the file is

skipped.

Exercise 1: deleting files

Remove File/Directory

e rm FILEPATTERN removes a file or files, e.g. * (), any expansion pattern (we've seen)
rm —d DIR removes a directory (assuming directory is empty)

* rm —r FILEPATTERN recursive remove (extreme)

e rm —rf FILEPATTERN forced recursive remove (!!!)

e Examples:

- touch file.txt

« rm file.txt (vou have default write permission)

 touch protected.txt

« chmod u-w protected.txt (u = user, -w = remove write permission)

« rm protected. txt

override r——r——r—— sandiway/staff for protected.txt?

« rm —f protected.txt (no interaction: forced removal)

« rm —i file.txt (ask it to ask you for confirmation)

remove file.txt?

Exercise 1: deleting files

best used in interactive shell At least two reasons:
* can put alias shortcut in Terminal startup ~/.bash_profile (MacOS) or ~/.bashrc ; ::;tlflcj::i;i:nputer
« alias rm="rm -1i" not recursively expanded :
(considered dangerous: why?)
« alias (list defined aliases)
« unalias rm (remove alias)

* Aliases don't work in shell scripts (rm. sh on course website):
#!/bin/bash

if [$# -ne 1 1; then define a function in ~/.bash_profile
echo usage: filename (absolute path: otherwise recursively defined)
exit 1 m () {

fl o . 11 11

touch $1 : ' /bin/rm -1 "$@

rm $1 rm —i won't }

be called! export —f rm

Other commands with —1

-1 (interactive confirm option)

before overwriting a file
emv -1 rename file
«Cp -1 copy file

dhcp-10-142-132-201:11ing508-18 sandiway$ cp -1 test.jpg test2.jpg
overwrite test2.jpg? (y/n [nl)

not overwritten

dhcp-10-142-132-201:1ing508-18 sandiway$ mv -i test.jpg test2.jpg
overwrite test2.jpg? (y/n [nl)

not overwritten

Exercise 2: double-spacing a text file

» Write a script that reads each line of a file, then writes the line back
out, but with an extra blank line following. This has the effect of
double-spacing the file.

$./doublespace.sh < singlespace.txt ;
1st line Note:
< filename means take input from filename
2nd line What you need to know to solve this:
3rd line 1. read
2.test [[..]]
4th line 3. while loop

5th line

s

Exercise 2: double-spacing a text file

* double-spacing the file (doublespace. sh):

.#1/bin/bash while [-n "$1n"]; do also works

.read 1n

swhile [[-n $1n 1]; do@—n=non-zero
4 echo $1n
5 echo

¢ read 1n
-done

read —r
If this option is given, backslash does not act as an escape character.

Exercise 2: read

read

[-ers] [-a aname] [-d delim] [-i text] [-n nchars] [-N nchars] [-p prompt] [-t

timeout] [-u £d] [name ...]

One line is read from the standard input, or from the file descriptor £fd supplied
as an argument to the -u option, split into words as described above under Word
Splitting, and the first word is assigned to the first name, the second word to the
second name, and so on. If there are more words than names, the remaining words
and their intervening delimiters are assigned to the last name. If there are fewer

words read from the input stream than names, the remaining names are assigned empty

values. The characters in IFS are used to split the line into words using the same

rules the shell wuses for expansion (described above under Word Splitting). The

Exercise 2: read

-i text

If readline is being used to read the line, text is placed into the editing
buffer before editing begins.

-n nchars
read returns after reading nchars characters rather than waiting for a

complete 1line of input, but honors a delimiter if fewer than nchars

characters are read before the delimiter.

Exercise 2: read

-S

-p prompt

Display prompt on standard error, without a trailing newline, before
attempting to read any input. The prompt is displayed only if input is
coming from a terminal.

Backslash does not act as an escape character. The backslash is considered
to Dbe part of the line. 1In particular, a backslash-newline pair may not be
used as a line continuation.

Silent mode. If input is coming from a terminal, characters are not echoed.

-t timeout

Cause read to time out and return failure if a complete line of input (or a
specified number of characters) is not read within timeout seconds. timeout
may be a decimal number with a fractional portion following the decimal
point. This option 1is only effective if read is reading input from a
terminal, pipe, or other special file; it has no effect when reading from
regular files. If read times out, read saves any partial input read into

the specified variable name. If timeout is 0, read returns immediately,

Good

Resource:
Bash chea
sheet

Conditionals

Conditions

Note that [[is actually a command/program that
returns either o (true) or 1 (false). Any program that
obeys the same logic (like all base utils, such as
grep(1) or ping(1)) can be used as condition, see
examples.

[[-z STRING]

Empty string

[[-n STRING]

Not empty string

[[STRING == STRING]] Equal
[[STRING != STRING]] Not Equal
[[NUM -eq NUM]] Equal
[[NUM -ne NUM]] Not equal
[[NUM -1t NUM]] Less than

[[NUM -1e NUM]] Less than or equal
[[NUM -gt NUM]] Greater than
[[NUM -ge NUM]] Greater than or equal
[[STRING =~ STRING]] Regexp

((NUM < NUM)) Numeric conditions

More conditions

[[-o noclobber 1] If OPTIONNAME is enabled
[[! EXPR]] Not
[[X&& Y 1] And

(xiurryn or

File conditions

-e

FILEL -nt FILE2]]

FILE1 -ot FILE2]]

FILE1 -ef FILE2]]

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

11

Example
Exists # String
if [[-z "$string"]]; then
Readable echo "string is empty"
elif [[-n "$string"]]; then
Symlink echo "String is not empty"
else
Directory echo "This never happens"
fi
Writable

Combinations

Size is > 0 bytes L Xea Y1l then

File £i

Executable
Equal
1is more recent than 2 if [["$A" == "$B"]]
2 is more recent than 1
Regex
if [["A" =~ . 1]

Same files

if (($a < $b)); then
echo "$a is smaller than $b"
fi

if [[-e "file.txt"]]; then
echo "file exists"
fi

https://devhints.io/bash

Exercise 2b: double-spacing from filename

* double-spacing the file (doublespace2.sh):

#!/bin/bash

21f [[-r $1 1]; then
while read -r 1n; do

echo $1n

5 echo

6 done < "$1"

;else

echo "Can't read $1"

exit 1

w0 fi

[1ing508-20% bash doublespace2.sh singlespace.txt
1st line

2nd line
3rd line
4th line

5th line

[11ing508-20% bash doublespace2.sh singlespace3.txt
Can't read singlespace3.txt
ling508-20% [

Exercise 2b: double-spacing from filename

read -r ln; do

* whitespace trim problem workaround: while IFS="";

@ @® singlespace2.txt [1ing508-20% bash doublespace.sh < singlespace2.txt
i ; 1st line over here
O o HE W
- ad ‘ ‘ CRPS N i
New Open Recent Revert Save Print Undo Redo 2nd line contd. here
1 1st line over here 3rd line
2 2nd line contd. here|
3 3rd line 4th line
4 4th line
5 5th line 5th line
1ing508-20% |
IFS The Internal Field Separator that is used for word splitting after expansion and to

split lines into words with the read builtin command. The default value is

" “<space><tab><newline>

Any character in IFS that is not IFS whitespace, along with any adjacent IFS whitespace

characters, delimits a field. A sequence of IFS whitespace characters is also treated as

a delimiter. If the value of IFS is null, no word splitting occurs.

Exercise 3: all except blank lines

* Changing the line spacing of a text file:

* write a script to echo all lines of a file except for blank lines

(nonblan

k.sh).

this is line one.

3 this is line two.
4 this is line three.
5 this is the last line.

#!1/bin/bash

1f [[-r $1 1]; then

3 while IFS='"'; read -r 1ln; do
4 if [[-n $1n 1]; then

: echo $1n
6 fi
done < "$1"
selse
0 echo "Can't read $1"
10 exit 1

i fi

Exercise 4: find with sed

* Using sed to edit all .html files in a directory
 combine with find -exec .. {} \;
« {} is the placeholder for each filename found by find

« \; ensures ; is passed to find, lets find know the end of the -exec command
* ; isescaped because it is also the shell command separator
* -i[SUFFIX], edit files in place (makes backup if extension supplied).
* Example:
1. grep 'see footnote 3" *.html
find . —name 'x.html' -print

2.

3. find . —-name 'k.html' —-print -exec sed -i.bak 's/see
footnote 3/see footnote 4/' {} \;

4.

grep 'see footnote 3" x.html

FIND(1) BSD General Commands Manual FIND(1)

NAME
find —— walk a file hierarchy

SYNOPSIS
find [-H | -L | -P] [-EXdsx] [-f path] path ... [expression]
find [-H | -L | -P] [-EXdsx] -f path [path ...] [expression]

Exercise |gae :
The find utility recursively descends the directory tree for each path

listed, evaluating an expression (composed of the " “primaries'' and

[]
4 o f l n d ““operands'' listed below) in terms of each file in the tree.
[]

-name pattern
True if the last component of the pathname being examined matches

pattern. Special shell pattern matching characters (" °['',
**1'', “Cx'', and “°?'') may be used as part of pattern. These
characters may be matched explicitly by escaping them with a
backslash (""\'').

-exec utility [argument ...] ;
True if the program named utility returns a zero value as its
exit status. Optional arguments may be passed to the utility.
The expression must be terminated by a semicolon (" ;''). If you
invoke find from a shell you may need to quote the semicolon if
the shell would otherwise treat it as a control operator. If the
string " "{}'' appears anywhere in the utility name or the argu-
ments it is replaced by the pathname of the current file.
Utility will be executed from the directory from which find was
executed. Utility and arguments are not subject to the further
expansion of shell patterns and constructs.

Exercise 4: sed

SED(1) BSD General Commands Manual

NAME
sed —— stream editor

SYNOPSIS
sed [-Ealn] command [file ...]
sed [-Ealn] [-e command] [-f command file] [-i extension] [file ...

DESCRIPTION
The sed utility reads the specified files, or the standard input if no
files are specified, modifying the input as specified by a list of com-
mands. The input is then written to the standard output.

A single command may be specified as the first argument to sed. Multiple
commands may be specified by using the -e or -f options. All commands
are applied to the input in the order they are specified regardless of
their origin.

—-e command
Append the editing commands specified by the command argument to
the list of commands.

Good

Resource:
Bash chea
sheet

Bash scripting cheatsheet

Introduction Example

This is a quick reference to getting started with #1/usr/bin/env bash

Bash scripting. NAME=" John"

echo "Hello SNAME!"
Learn bash in y minutes

String quotes

Bash Guide
NAME="John"
echo "Hi $NAME" #=> Hi John
Gl ereauian echo 'Hi SNAME' #=> Hi SNAME
git commit && git push Functions
git commit || echo "Commit failed"
get_name() {
S sl echo "John"
}
set -euo pipefail echo "You are $(get_name)"
IFS=§'\n\t'

See: Functions
See: Unofficial bash strict mode

Brace expansion

echo {A,B}.js

{A/ B}
{A/B}.Js

{1..5}

See: Brace expansion

Free 14 Day Trial.

"r Rollout ads via Carbon

Variables

NAME="John"
echo $NAME
echo "SNAME"
echo "${NAME}!"

Shell execution

echo "I'm in $(pwd)"
echo "I'm in “pud"
Same

See Command substitution

Conditionals

if [[-z "$string"]]; then
echo "String is empty"
elif [[-n "Sstring"]]; then
echo "String is not empty"
i

See: Conditionals

Same asA B
Same as A.js B.js

Sameas1 2 3 4 5

https://devhints.io/bash

Good

Resource:
Bash chea
sheet

Parameter expansions

Basics

name="John"
echo ${name}
echo ${name/J/j} #=
echo ${name:0:2} #=.

> "john" (substitution)
>

#=> "Jo" (slicing)
>
>

"Jo" (slicing)

echo ${name::2} #

echo ${name::-1} #=> "Joh" (slicing)

echo ${name:(-1)} #=> "n" (slicing from righ
t)

echo ${name:(-2):1} #=> "h" (slicing from righ
t)

echo ${food:-Cake} #=> $food or "Cake"

length=2
echo ${name:0:length} #=> "Jo"

See: Parameter expansion

STR="/path/to/foo.cpp"

echo ${STR%.cpp} # /path/to/foo
echo ${STR%.cpp}.0 # /path/to/foo.o
echo ${STR%/*} # /path/to

echo ${STR##*.} # cpp (extension)
echo ${STR##*/} # foo.cpp (basepath)

echo ${STR#*/} # path/to/foo.cpp
echo ${STR##*/} # foo.cpp

echo ${STR/foo/bar} # /path/to/bar.cpp

STR="Hello world"
echo ${STR:6:5} # "world"
echo ${STR: -5:5} # "world"

SRC="/path/to/foo.cpp"
BASE=${SRC##*/} #=> "foo.cpp" (basepath)
DIR=${SRC%$BASE} #=> "/path/to/" (dirpath)

Substitution
${FOO%suffix} Remove suffix
${Foo#prefix} Remove prefix
${FoO%%suffix} Remove long suffix
${Foo##prefix} Remove long prefix
${F00/from/to} Replace first match
${F00//from/to} Replace all
${F00/%from/to} Replace suffix
${F00/#from/to} Replace prefix
Length
${#F00} Length of $Fo0

Default values

${F00: -val} $F00, or val if unset (or null)
${F00:=val} Set $F00 to val if unset (or null)
${F00:+val} val if $F00 is set (and not null)
${F00:?message} Show error message and exit if

$FO00 is unset (or null)

Omitting the : removes the (non)nullity checks, e.g.
${F00-val} expands to val if unset otherwise $F00.

Comments

Single line comment

This is a
multi line
comment

Substrings

${F00:0:3}

${F00: (-3):3}

Manipulation

STR="HELLO WORLD!"
echo ${STR,} #=>
st letter)

echo ${STR,,} #=>
se)

STR="hello world!"
echo ${STR"} #=>
st letter)

echo ${STR\"\} #=>
se)

Substring (position, length)

Substring from the right

"hELLO WORLD!" (lowercase 1

"hello world!" (all lowerca

"Hello world!" (uppercase 1

"HELLO WORLD!" (all upperca

https://devhints.io/bash

Loops

Basic for loop C-like for loop Ranges
for i in /etc/rc.*; do for ((i=0; i< 100 ; i++)); do for i in {1..5}; do
echo $i echo $i echo "Welcome $i"
done done done

With step size

Reading lines Forever
for i in {5..50..5}; do
echo "welcome $i"
cat file.txt | while read line; do while true; do done
echo $line
done done

Good

Functions

L]
| < e S O u rC e . Defining functions Returning values Raising errors

myfunc() { myfunc() { myfunc() {
echo "hello $1" local myresult='some value' return 1
a S C e a ’ oo smyresuit ’
}
Same as above (alternate syntax) if myfunc; then
function myfunc() { result="$(myfunc)" echo "success"
echo "hello $1" else
¥ echo "failure"
fi
Arguments
myfunc "John"
$# Number of arguments
$* All arguments
$0 All arguments, starting from first

$1 First argument

https://devhints.io/bash

Good

Resource:
Bash chea
sheet

Conditionals

Conditions

Note that [[is actually a command/program that
returns either o (true) or 1 (false). Any program that
obeys the same logic (like all base utils, such as
grep(1) or ping(1)) can be used as condition, see
examples.

[[-z STRING]

Empty string

[[-n STRING]

Not empty string

[[STRING == STRING]] Equal
[[STRING != STRING]] Not Equal
[[NUM -eq NUM]] Equal
[[NUM -ne NUM]] Not equal
[[NUM -1t NUM]] Less than

[[NUM -1e NUM]] Less than or equal
[[NUM -gt NUM]] Greater than
[[NUM -ge NUM]] Greater than or equal
[[STRING =~ STRING]] Regexp

((NUM < NUM)) Numeric conditions

More conditions

[[-o noclobber 1] If OPTIONNAME is enabled
[[! EXPR]] Not
[[X&& Y 1] And

(xiurryn or

File conditions

-e

FILEL -nt FILE2]]

FILE1 -ot FILE2]]

FILE1 -ef FILE2]]

FILE

FILE

FILE

FILE

FILE

FILE

FILE

FILE

11

Example
Exists # String
if [[-z "$string"]]; then
Readable echo "string is empty"
elif [[-n "$string"]]; then
Symlink echo "String is not empty"
else
Directory echo "This never happens"
fi
Writable

Combinations

Size is > 0 bytes L Xea Y1l then

File £i

Executable
Equal
1is more recent than 2 if [["$A" == "$B"]]
2 is more recent than 1
Regex
if [["A" =~ . 1]

Same files

if (($a < $b)); then
echo "$a is smaller than $b"
fi

if [[-e "file.txt"]]; then
echo "file exists"
fi

https://devhints.io/bash

Arrays

Defining arrays Working with arrays

Fruits=('Apple' 'Banana' 'Orange') echo ${Fruits[0]}
echo ${Fruits[-1]}
echo ${Fruits[@]}

Element #0
Last element
All elements, space-separated

oo

Fruits[e]="Apple" echo ${#Fruits[@]} Number of elements
Fru}tS[lWZ Banana echo ${#Fruits} # string length of the 1st element
Fruits[2]="0Orange echo ${#Fruits[3]} # String length of the Nth element

echo ${Fruits[@]:3:2} # Range (from position 3, length 2)
echo ${!Fruits[@]} # Keys of all elements, space-separated
Operations
)) Iteration
Fruits=("${Fruits[@]}" "Watermelon") # Push
Fruits+=('Watermelon') # Also Push
Fruits=(${Fruits[@]/Ap*/}) # Remove by regex match for i in "${arrayName[@]}"; do
unset Fruits[2] # Remove one item echo $i
Fruits=("${Fruits[@]}") # Duplicate done
Fruits=("${Fruits[@]}" "${Veggies[@]}") # Concatenate
R lines=("cat "logfile"") # Read from file
L]
Defining Working with dictionaries Iteration
Iterate over values
declare -A sounds echo ${sounds[dog]} # Dog's sound
echo ${sounds[@]} # All values for val in "${sounds[@]}"; do
echo ${!sounds[@]} # All keys echio Svel
sounds[dog]="bark" echo ${#sounds[@]} # Number of elements —
sounds [cow]="moo" unset sounds[dog] # Delete dog
sounds [bird]="tweet"
sounds [wolf]="howl" Iterate over keys
for key in "${!sounds[@]}"; do
Declares sound as a Dictionary object (aka echo $key

associative array). done

https://devhints.io/bash

Options

Options Glob options
set -0 noclobber # Avoid overlay files (echo "hi" > foo) shopt -s nullglob # Non-matching globs are removed ('*.foo' => '')
set -0 errexit # Used to exit upon error, avoiding cascading errors shopt -s failglob # Non-matching globs throw errors
set -o pipefail # Unveils hidden failures shopt -s nocaseglob # Case insensitive globs
set -o nounset # Exposes unset variables shopt -s dotglob # Wildcards match dotfiles ("*.sh" => ".foo.sh")

shopt -s globstar # Allow ** for recursive matches ('lib/**/*.rb' => 'l
ib/a/b/c.rb")

Set GLOBIGNORE as a colon-separated list of patterns to be removed from glob
matches.

G O O d History
Resource:

history Show history $ Expand last parameter of most recent command

B a S h C h e a shopt -s histverify Don't execute expanded result immediately 1 Expand all parameters of most recent command
!-n

Expand nth most recent command

Operations
n Expand nth command in history
" Execute last command again . .
I<command> Expand most recent invocation of command <command>
11 :5/<FROM>/<T0>/ Replace first occurrence of <FROM> to <T0> in most recent
command Slices
11 :gs/<FROM>/<T0>/ Replace all occurrences of <FROM> to <T0O> in most recent
command tn Expand only nth token from most recent command (command is 0; first
argument is 1)
18t Expand only basename from last parameter of most recent
command n Expand first argument from most recent command

1S:h Expand only directory from last parameter of most recent s Expand last token from most recent command

https://devhints.io/bash

Miscellaneous

Numeric calculations Subshells

$((a + 200)) # Add 200 to $a (cd somedir; echo "I'm now in $PWD")
pwd # still in first directory

$((SRANDOM%200)) # Random number 0..199
Redirection

Inspecting commands

python hello.py > output.txt # stdout to (file)

python hello.py >> output.txt stdout to (file), append
python hello.py 2> error.log stderr to (file)

python hello.py 2>&1 stderr to stdout

python hello.py 2>/dev/null stderr to (null)

python hello.py &/dev/null stdout and stderr to (null)
O O Trap errors

python hello.py < foo.txt feed foo.txt to stdin for python

command -V cd
#=> "cd is a function/alias/whatever"

o oW o

trap 'echo Error at about $LINENO' ERR

Resource: .

case "$1" in
traperr() { start | up)

echo "ERROR: ${BASH_SOURCE[1]} at about ${BASH_LINENO[0]}" vagrant up
dSNn Cnhed)
set -0 errtrace *)

trap traperr ERR echo "Usage: $0 {start|stop|ssh}"

esac
Source relative

printf

source "${0%/*}/../share/foo.sh"

printf "Hello %s, I'm %s" Sven Olga
Directory of script #=> "Hello Sven, I'm Olga

printf "1 +
DIR="${0%/*}" #=> "1+ 1= 2"

%d" 2

https://devhints.io/bash

Good

Resource:
Bash chea
sheet

Getting options

while [["$1" =~ A- && ! "$1" == "--"]]; do case $1 in

-V | --version)
echo $version
exit
-s | --string)
shift; string=$1
-f | --flag)
flag=1
esac; shift; done
if [["$1" == '--']]; then shift; fi

Special variables
I
1
$$

$0

See Special parameters.

Grep check

if grep -q 'foo' ~/.bash_history; then
echo "You appear to have typed 'foo' in the past"
fi

Exit status of last task
PID of last background task
PID of shell

Filename of the shell script

#=> "IN1S 1S NOW yoUu Print a T10aT: Z.UYyuuy’

Heredoc

cat <<END
hello world
END

Reading input

echo -n "Proceed? [y/n]: "

read ans

echo $ans

read -n 1 ans # Just one character
Go to previous directory

pwd # /home/user/foo

cd bar/

pwd # /home/user/foo/bar
cd -

pwd # /home/user/foo

Check for command'’s result

if

fi

ping -c 1 google.com; then
echo "It appears you have a working internet connection"

https://devhints.io/bash

