
LING 408/508: Programming for
Linguists

Lecture 1

Today's Class

• Ungraded homework exercise review
• 32 bit floating point demonstration
• Homework 1 (due tomorrow midnight)

Ungraded Homework Exercise Review

• What would the integer representation of the speed of light (in m/s)
look like in binary representation as a 32 bit number?
• c = 299,792,458

231 230 229 228 227 226 225 224 … … 27 26 25 24 23 22 21 20

byte 3 byte 2 byte 1 byte 0

Ungraded Homework Exercise Review
Homework Exercise
• What would the integer representation of the speed of light (in m/s)

look like in binary representation as a 32 bit number?

231 230 229 228 227 226 225 224 … … 27 26 25 24 23 22 21 20

1

byte 3 byte 2 byte 1 byte 0

c = 299,792,458

228 = 268,435,456
left with 31,357,002

224 = 16,777,216
left with 14,579,786

223 = 8,388,608
left with 6,191,178
222 = 4,194,304
left with 1,996,874
220 = 1,048,576
left with 948,298

219 = 524,288
left with 424,010
218 = 262,144
left with 161,866
217 = 131,072
left with 30,794

214 = 16,384
left with 14,410
213 = 8,192
left with 6,218
212 = 4,096
left with 2,122

Ungraded Homework Exercise Review

• What would the integer representation of the speed of light (in m/s)
look like in binary representation as a 32 bit number?

byte 3 byte 2 byte 1 byte 0

c = 299,792,458
211 = 2,048
left with 74

26 = 64
left with 10

23 = 8
left with 2

21 = 2
left with 0

00001001 11011110 01111000 01001010

Last time

• Recall the speed of light:
• c = 2.99792458 x 108 (m/s)

• The 32 bit floating point representation (float) – sometimes called
single precision - is composed of 1 bit sign, 8 bits exponent (unsigned
with bias 2(8-1)-1), and 23 bits coefficient (24 bits effective).

• Can it represent c without loss of precision?
• 224-1 = 16,777,215
• Nope. Let's demonstrate that!

32bitfloat.xlsx

c = 2.99792458 x 108 (m/s)

Representing zero

• Let's not worry about representing zero in the spreadsheet…

Homework 1

math.pi in Python 3 reports the decimal value of PI to the best of its ability

Homework 1

• How close can you get to the Python value of PI given the 32 bit floating
point in the spreadsheet 32bitfloat.xlsx?
• Does Python use a 32 bit floating point representation? Explain.
• Email: your answer to sandiway@email.arizona.edu
• SUBJECT: 408/508 Homework 1 YOUR NAME
• PDF file please only
• Submission should include a screen snapshot of your final spreadsheet
• Due date: tomorrow midnight
• Homework review: next time (Thursday)

mailto:sandiway@email.arizona.edu

Representing zero

• Let's not worry about representing zero in the spreadsheet…

Introduction: data types

• How about letters, punctuation, etc.?
• ASCII

• American Standard Code for Information Interchange
• Based on English alphabet (upper and lower case) + space + digits + punctuation +

control (Teletype Model 33)
• Question: how many bits do we need?
• 7 bits + 1 bit parity
• Remember everything is in binary …

C:
char

Teletype Model 33 ASR
Teleprinter (Wikipedia)

Introduction: data types
order is important in sorting!

0-9: there’s a connection with BCD. Notice: code 30 (hex) through 39 (hex)

Introduction: data types

• Parity bit:
• transmission can be noisy
• parity bit can be added to ASCII code
• can spot single bit transmission errors
• even/odd parity:

• receiver understands each byte should be even/odd
• Example:

• 0 (zero) is ASCII 30 (hex) = 011000
• even parity: 0011000, odd parity: 1011000

• Checking parity:
• Exclusive or (XOR): basic machine instruction

• A xor B true if either A or B true but not both
• Example:

• (even parity 0) 0011000 xor bit by bit
• 0 xor 0 = 0 xor 1 = 1 xor 1 = 0 xor 0 = 0 xor 0 = 0 xor 0 = 0 xor 0 = 0

x86 assemby language:
1. PF: even parity flag set by

arithmetic ops.
2. TEST: AND (don’t store

result), sets PF
3. JP: jump if PF set

Example:
MOV al,<char>
TEST al, al
JP <location if even>
<go here if odd>

Introduction: data types

• UTF-8
• standard in the post-ASCII world
• backwards compatible with ASCII
• (previously, different languages had multi-byte character sets that clashed)
• Universal Character Set (UCS) Transformation Format 8-bits

(Wikipedia)

Introduction: data types

• Example:
• あ Hiragana letter A: UTF-8: E38182
• Byte 1: E = 1110, 3 = 0011
• Byte 2: 8 = 1000, 1 = 0001
• Byte 3: 8 = 1000, 2 = 0010
• い Hiragana letter I: UTF-8: E38184

Shift-JIS (Hex):
あ: 82A0
い: 82A2

Introduction: data types

• How can you tell what encoding your file is using?

• Detecting UTF-8

• Microsoft:

• 1st three bytes in the file is EF BB BF

• (not all software understands this; not everybody uses it)
• HTML:

• <meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
• (not always present)

• Analyze the file:

• Find non-valid UTF-8 sequences: if found, not UTF-8…

• Interesting paper:

• http://www-archive.mozilla.org/projects/intl/UniversalCharsetDetection.html

http://www-archive.mozilla.org/projects/intl/UniversalCharsetDetection.html

