LING 408/508: Programming for
Linguists

Lecture 2

Today's Class

e Continue with the introduction
* binary representation and arithmetic
* ungraded homework exercise

Introduction

* Machine Language

* A CPU understands only one language: machine language
* all other languages must be translated into machine language

16 bits

* Primitive instructions include: 8 bits 8 bits
* MOV EAX AX AH AL
e PUSH "

. POP g EBX BX BH BL
« ADD/SUB % ECX X CH cL
* INC/DEC g

° IMUL/ IDIV r_%_ EDX DX DH DL
« AND/OR/XOR/NOT R -

- NEG °

e SHL/SHR Eo1

* J M P (stack poin':;::;

e CMP EBP

* JE/INE/JZ/)G/IGE/IL/ILE (base pointer)

* CALL/RET 32 bits

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Introduction

* Not all machine instructions are conceptually necessary
* many provided for speed/efficiency

* Theoretical Computer Science

e All mechanical computation can be carried out using a TURING MACHINE
(Turing, 1936)

* Finite state table + (infinite) tape
* Tape instructions:
* at the tape head: Erase, Write, Move (Left/Right/NoMove)

* Finite state table:
* Current state x Tape symbol --> new state x New Tape symbol x Move

Introduction

* Not all machine instructions are conceptually necessary
* many provided for speed/efficiency

* Theoretical Computer Science

e All mechanical computation can be carried out using a TURING MACHINE
(Turing, 1936)

* Finite state table + (infinite) tape
* Tape instructions:
* at the tape head: Erase, Write, Move (Left/Right/NoMove)

* Finite state table:
* Current state x Tape symbol --> new state x New Tape symbol x Move

Introduction

tape
LR
ALLARLA head
ANAARRRN

E

http://www.thegreatbear.net/audio-tape-transfer/quarter-inch-reel-to-reel-transfer/

Introduction

* Not all machine instructions are conceptually necessary
* many provided for speed/efficiency

* Example (Hot Chips 2018):

Cascade Lake Vector Neural Network Instructions Al/DL Inference Enhancements on INT8 with VNNI
2
Vector Neural Network Instruction (VNNI) on Cascade Lake accelerates / AVX512

vpmaddubsw

Deep Learning and Al inference workloads

* VNNI: A new set of Intel* Advanced Vector Extension (Intel® AVX-512) instructions

. 8—bit(in18) new instruction (VPDPBUSD) '\7 Current AVX-512 instructions to perform INT8 c lutions: ddwd, vpaddd "/“

+ Fuses 3 instructions in inner convolution loop using int8 data type New instructions for accelerating Al on Intel” Xeon® Scalable processors using int8 data

* 16-bit (int16) new instruction (VPDPWSSD) P

» Fuses 2 instructions in inner convolution loop using int16 data type

b VNNI instruction to accelerate INT8 convolutions: vpdpbusd e

Introduction

* Storage:

* based on digital logic

* binary (base 2) — everything is a power of 2

* Byte: 8 bits
* 01011011
o =26+4244+23+421+20
c =64+16+8+2+1 o (t jo Jt jr jo J* |t
* =91 (in decimal)

* Hexadecimal (base 16)
* 0-9,A,B,C,D,E,F (need 4 bits)

. 5B (=1 byte) 0 |1 |0 |1 |1 |0 |1 |1
« =5%16'+11
+ =80+11 16! 16° > B

P 5 |8 |

Introduction: data types

* Integers

* In one byte (= 8 bits), what’s the largest and smallest number, we can
represent?

00000000 =0
01111111 =127
10000000 =-128
11111111 =-1

00000000 11111111

0o .. 127 | -128 | -127 -1

2’s complement representation

Introduction: data types

* Integers

In one byte, what’s the largest and smallest number, we can represent?
Answer: -128 .. 0.. 127 using the 2’s complement representation
Why? super-convenient for arithmetic operations

“to convert a positive integer X to its negative counterpart, flip all the bits,
and add 1”

Example:
00001010 = 23 + 2* = 10 (decimal) Addition:
11110101 +1=11110110=-10 (decimal) -10+10

= 11110110
11110110 flip + 1 =00001001 + 1 = 00001010 |+ 00001010 = 0 (ignore overflow)

Introduction: data types

 Typically 32 bits (4 bytes) are used to store an integer
* range: -2,147,483,648 (21311 -1) to 2,147,483,647 (21321 -1)
231 230 229 228 227 226 225 224 . . 27 26 25 24 23 22 21 20

byte 3 byte 2 byte 1 byte 0 C:
int

e what if you want to store even larger numbers?
* Binary Coded Decimal (BCD)
e code each decimal digit separately, use a string (sequence) of decimal digits ...

Introduction: data types

e what if you want to store even larger numbers?
* Binary Coded Decimal (BCD)

* 1 byte can code two digits (0-9 requires 4 bits)
* 1 nibble (4 bits) codes the sign (+/-), e.g. hex C/D

23 22 21 20 O 2 0 1 4
O (0 |0 |O 2 bytes (= 4 nibbles)
23 22 21 20

1 + 2 0 1 4

2.5 bytes (= 5 nibbles)

1
0O credit (+) debit (-)
0 1
1 1 0 0 C 1 1 0 1 | D

O |0 |O
1 0

Introduction: data types

e.g. probabilities

* Typically, 64 bits (8 bytes) are used to represent floating point

numbers (double precision) c.
e ¢=2.99792458 x 108 (m/s) float
double

coefficient: 52 bits (implied 1, therefore treat as 53)
exponent: 11 bits (usually not 2’s complement, unsigned with bias 2(10-1)-1 =

511) x86 CPUs have a built-in
* sign: 1 bit (.|./_) floating point coprocessor (x87)
80 bit long registers
exponent fraction
sign (11 bit) (52 bit)
I Il I
@) @) @)
63 52 0

wikipedia

Example 1

* The speed of light:
e ¢=2.99792458 x 108 (m/s)

1. Can a 4 byte integer be used to represent ¢ exactly?
* 4 bytes = 32 bits
* 32 bits in 2’s complement format
e Largest positive number is
e 231.1 =2,147,483,647
. c= 299,792,458

Example 2

 Recall the speed of light:
e ¢=2.99792458 x 108 (m/s)

2. How much memory would you need to encode c using BCD
notation?
* 9 digits
» each digit requires 4 bits (a nibble)
* BCD notation includes a sign nibble
 total is 5 bytes

Example 3

 Recall the speed of light:
e ¢=2.99792458 x 108 (m/s)

3. Can the 64 bit floating point representation (double) encode c
without loss of precision?
» Recall significand precision: 53 bits (52 explicitly stored)
¢ 2°3-1=9,007,199,254,740,991
* almost 16 digits
* (we only need 9 digits of precision)

Example 4

 Recall the speed of light:
c =2.99792458 x 108 (m/s)

* The 32 bit floating point representation (f Lloat) — sometimes called
single precision - is composed of 1 bit sign, 8 bits exponent (unsigned
with bias 2(8-1)-1), and 23 bits coefficient (24 bits effective).

sign exponent (8 bits) fraction (23 bits)
| [I |

0|0f1)1f{1|1|1|0|0JO|1[O|O|O|O|OfO|OfO|O|O|O|Of(O|O|O(O|OfO|O|O|O

31 30 2322 (bit index) 0
e Can it represent ¢ without loss of precision?
e 2241 =16,777,215
* Nope (7 digits of precision)

Ungraded Homework Exercise

* What would the integer representation of the speed of light (in m/s)
look like in binary representation as a 32 bit number?

231 230 229 228 227 226 225 224 . . 27 26 25 24 23 22 21 20

byte 3 byte 2 byte 1 byte 0

