LING 408/508: Computational
Techniques for Linguists

Lecture 14



Today's Topics

* Reading assignment:
* https://www.gnu.org/software/gawk/manual/html node/Regexp.html

* Let's make sure everyone is on board with associative arrays in awk

A fundamental data structure the same as:
* dict in Python
* hash in Perl

e gsub
e gensub


https://www.gnu.org/software/gawk/manual/html_node/Regexp.html

awk :

regex

3 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Because regular expressions are such a fundamental part of awk programming, their
format and use deserve a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that matches every input record whose text belongs to that set. The simplest regular expression
is a sequence of letters, numbers, or both. Such a regexp matches any string that contains that sequence. Thus, the regexp ‘foo’ matches any string containing
‘foo’. Thus, the pattern /foo/ matches any input record containing the three adjacent characters ‘foo’ anywhere in the record. Other kinds of regexps let you

specify more complicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how regular expressions work, we present more complicated instances.

* Regexp Usage:

* Escape Sequences:

* Regexp Operators:

* Bracket Expressions:
e Leftmost Longest:

e Computed Regexps:

* GNU Regexp Operators:

¢ Case-sensitivity:

* Regexp Summary:

How to Use Regular Expressions.
How to write nonprinting characters.

Regular Expression Operators.

What can go between ‘[...] .

awk doesn't support \d (digit) etc. from Perl, use [[:digit:]] instead

How much text matches.
Using Dynamic Regexps.
Operators specific to GNU software.
How to do case-insensitive matching.

Regular expressions summary.




awk :

regex

1

RESOURCE

PHONE NUMBER

2 University of Arizona Police Department (UAPD)
3 Risk Management and Safety 520-621-1790

4 Office of Radiation, Chemical and Biological Safety
5 Arizona Institutional Biosafety Committee 520-621-5279

6 Campus Health Service 520-621-6490
7 Dean of Students Office 520-621-7057

8 Facilities Management
9 Arizona Poison and Drug Information Center 800-222-1222
10 Recorded updates during campus emergencies 520-626-1222 (Tucson) 800-362-0101 (Toll free)

520-621-3000

NR = number of lines
NF = number of fields in a line
variable[key] associative array
variable[key] = value

520-621-8273

520-626-6850

Build a table of all the words used:

not case insensitive

awk 'NR!=1 {for (i=1; i<=NF; i++) {word[$i]+=1}}

END {for (x in word) { print

uanumbers.txt | sort —k 2 -n

"%12s %d\n", x, word[x]}N

NR!=1 (pattern)skip 1% line (!= means not equal to)

NF = number of fields on a line

word = associative array of frequencies

| = pipe (output of awk into sort)

sort —k2 —n =command to sort on field 2 numerically (—n)

Arizona 3
and 3
of 3
Management 2
Safety 2
Office 2
Institutional 1
800-362-0101 1
800-222-1222 1
520-626-6850 1

520-621-1790 1
emergencies 1

during 1
campus 1
Police 1
Poison 1
Health 1
Center 1
Campus 1




awk: regex

* As we read each $1, $2, etc.. field, we populate the associative array word:
1. word["University"] =1
word["of"] =1

2.
3. word["Arizona"] =1
4. ..

1 RESOURCE PHONE NUMBER
2 University of Arizona Police Department (UAPD) 520-621-8273
3 Risk Management and Safety 520-621-1790
4 Office of Radiation, Chemical and Biological Safety 520-626-6850
5 WOf‘d["Of"] =9 5 Arizona Institutional Biosafety Committee 520-621-5279
. - 6 Campus Health Service 520-621-6490
7 Dean of Students Office 520-621-7057
6 q 8 Facilities Management 520-621-3000
. 9 Arizona Poison and Drug Information Center 800-222-1222
7. word["Arizona"] =2 10 Recorded updates during campus emergencies 520-626-1222 (Tucson) 800-362-0101 (Toll free)
8.
9

10. word["Arizona"] =3
11.



awk: regex

RESOURCE PHONE NUMBER

University of Arizona Police Department (UAPD) 520-621-8273

Risk Management and Safety 520-621-1790

Office of Radiation, Chemical and Biological Safety 520-626-6850
Arizona Institutional Biosafety Committee 520-621-5279

Campus Health Service 520-621-6490

NOY VI A WN =

Dean of Students Office 520-621-7057

8 Facilities Management 520-621-3000

9 Arizona Poison and Drug Information Center 800-222-1222

10 Recorded updates during campus emergencies 520-626-1222 (Tucson) 800-362-0101 (Toll free)

Build a table of all the words used (case-insensitive):

awk 'NR!=1 {for (i=1; i<=NF; i++) {word[tolower($i)]+=1}}
END {for (x in word) { printf "%12s %d\n", x, word[x]}}'

uanumbers.txt | sort —k 2 -nr

tolower(string)
Return a copy of string, with each uppercase character in the string replaced with
its corresponding lowercase character. Nonalphabetic characters are left

unchanged. For example, tolower("MiXeD cAsE 123") returns "mixed case 123".
https://www.gnu.org/software/gawk/manual/html_node/String-—
Functions.html

arizona 3
and 3
of 3
management 2
safety 2
office 2
campus 2
institutional 1
800-362-01011

520-621-1790 1
information 1
emergencies 1
university 1

biosafety 1
students 1
recorded 1
chemical 1
(tucson) 1



https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

awk: regex

1 RESOURCE PHONE NUMBER

2 University of Arizona Police Department (UAPD) 520-621-8273

3 Risk Management and Safety 520-621-1790

4 Office of Radiation, Chemical and Biological Safety 520-626-6850

5 Arizona Institutional Biosafety Committee 520-621-5279

6 Campus Health Service 520-621-6490

7 Dean of Students Office 520-621-7057

8 Facilities Management 520-621-3000

9 Arizona Poison and Drug Information Center 800-222-1222

10 Recorded updates during campus emergencies 520-626-1222 (Tucson) 800-362-0101 (Toll free)

Build a table of all the words used (no numbers, no

punctuation):

gawk 'NR!=1 {for (i=1; i<=NF; i++) {gsub(/[*A-Za-z]/, "", $i);
word[tolower($i)]+=1}} END {for (x in word) { printf "%12s %d\n"
x, word[x]}}' uanumbers.txt | sort —k 2 -nr

gsub(regexp, replacement [, target])

Search target for all of the longest, leftmost, nonoverlapping matching substrings it can find
and replace them with replacement. The ‘g’ in gsub() stands for “globa

replace everywhere.

https://www.gnu.orqg/software/gawk/manual/html node/String—Functions.html

which means

arizona 3
and 3
of 3
management 2
safety 2
office 2
campus 2
institutional 1
information 1
emergencies 1
university 1
facilities 1
department 1
biological 1
radiation 1
committee 1
biosafety 1
students 1
recorded 1
chemical 1
updates 1
service 1
tucson 1
police 1



https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

awk: regex

3 Regular Expressions

A regular expression, or regexp, is a way of describing a set of strings. Because regular expressions are such a fundamental part of awk programming, their
format and use deserve a separate chapter.

A regular expression enclosed in slashes (‘/’) is an awk pattern that matches every input record whose text belongs to that set. The simplest regular expression
is a sequence of letters, numbers, or both. Such a regexp matches any string that contains that sequence. Thus, the regexp ‘foo’ matches any string containing
‘foo’. Thus, the pattern /foo/ matches any input record containing the three adjacent characters ‘foo’ anywhere in the record. Other kinds of regexps let you

specify more complicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how regular expressions work, we present more complicated instances.

* Regexp Usage: How to Use Regular Expressions.

* Escape Sequences: How to write nonprinting characters.

* Regexp Operators: Regular Expression Operators.

* Bracket Expressions: What can go between ‘[...] .

* Leftmost Longest: How much text matches.

e Computed Regexps: Using Dynamic Regexps.

* GNU Regexp Operators: Operators specific to GNU software.

* Case-sensitivity: How to do case-insensitive matching.

* Regexp Summary: Regular expressions summary.



awk: gensub

* https://www.gnu.org/software/gawk/manual/htm| node/String-Functions.html

» gensub(regexp, replacement, how [, target])

Search the target string target for matches of the regular expression regexp.

If how is a string beginning with ‘g” or ‘G’ (short for “global”), then replace all matches

of regexp with replacement. Otherwise, how is treated as a number indicating which match
of regexp to replace.

If no target is supplied, use SO.
It returns the modified string as the result of the function and the original target string
is not changed.

gensub() provides an additional feature that is not available in sub() or gsub(): the ability to
specify components of a regexp in the replacement text. This is done by using parentheses in
the regexp to mark the components and then specifying ‘\IV’ in the replacement text,

where Nis a digit from 1 to 9.


https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

awk: gensub

If only a BEGIN section, no need to provide a file (to process line by line).
gawk 'BEGIN {print "hello"}'

hello

e —V (sets variable):
gawk —-v n="hello" 'BEGIN {print n, "\n"}'
hello

» gensub(regex, replacement,how, target)
« regex=/(.+) (.+)/
* replacement = "\\2 \\1"

* how="9g

* target = (variable) n
QQWK}TV n="hello goodbye" 'BEGIN {print gensub(/(.+) (.+)/, "\\2 \\1", "g", n),
n
* What happens?



