
LING 408/508: Computational
Techniques for Linguists

Lecture 13

Administrivia

• Homework 6 review
• Regular expressions (regex) and awk

Homework 6

• Write awk code to:
1. print a table of and calculate the total percentage of population for the

top 10, 20 and 30 surnames
2. read and print out the table with table headings aligned with the field

values (use printf)

Homework 6 Review

• Basic solution:
awk
'BEGIN {f="%5s %-14s %s\n"; printf f, "Rank", "Name", "%"}
NR <= 10 {printf f, $1, $2, $3; s+=$3}
END {print "Total %:", s}'
surnames.txt

• Notes:
• NR variable Number of records (lines)
• f variable Format string
%s format control print as a string
%Ns format control print as a string in width N characters
%-Ns format control print as a string in width N characters, left-justified

'BEGIN {f="%5s %-14s %s\n"; printf f, "Rank", "Name", "%"}
NR <= 10 {printf f, $1, $2, $3; s+=$3}
END {print "Total %:", s}'

Homework 6 Review

Homework 6 Review

Homework 6 Review

Homework 6 Review

• Some of you may have run into a problem with printf's behavior
with %s (string printing) and UTF-8
• Note the printf tutorial is from gnu
• There are variants of awk: e.g. mawk, gawk

Homework 6 Review

Homework 6 Review

• Why? Reason is some printf implementations count
bytes not (multibyte) characters
• cannot be fixed by changing locale to es_ES.UTF-8

awk: regex

• Reading assignment (READ! READ! READ!):
• https://www.gnu.org/software/gawk/manual/html_node/Regexp.html

• Reference manual:
• http://manpages.ubuntu.com/manpages/bionic/en/man7/regex.7.html

pattern can be a regex
/regex/

https://www.gnu.org/software/gawk/manual/html_node/Regexp.html
http://manpages.ubuntu.com/manpages/bionic/en/man7/regex.7.html

awk: regex

uanumbers.txt

awk: regex

Task: print every line that has a toll-free number
awk '/800-/ {print $0}' uanumbers.txt
Arizona Poison and Drug Information Center 800-222-1222
Recorded updates during campus emergencies 520-626-1222 (Tucson) 800-362-0101 (Toll free)

awk: regex

Task: print every line that uses the term "safety"
awk '/[Ss]afety/ {print $0}' uanumbers.txt
Risk Management and Safety 520-621-1790
Office of Radiation, Chemical and Biological Safety 520-626-6850
Arizona Institutional Biosafety Committee 520-621-5279

[Ss] means match either S or s
([^Ss] would be match any character other than S or s)

awk: regex
• Two useful string functions:

• https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html
• match(string, regexp [, array])

• Search string for the longest, leftmost substring matched by the regular
expression regexp and return the character position (index) at which that substring begins
(one, if it starts at the beginning of string). If no match is found, return zero.

• The match() function sets the predefined variable RSTART to the index. It also sets the
predefined variable RLENGTH to the length in characters of the matched substring. If no
match is found, RSTART is set to zero, and RLENGTH to -1.

• substr(string, start [, length])
• Return a length-character-long substring of string, starting at character number start. The first

character of a string is character number one.
• If length is not present, substr() returns the whole suffix of string that begins at character

number start.

https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

awk: regex

awk 'match($0,/\t/) {print substr($0,1,RSTART)}' uanumbers.txt
RESOURCE
University of Arizona Police Department (UAPD)
Risk Management and Safety
Office of Radiation, Chemical and Biological Safety
Arizona Institutional Biosafety Committee
Campus Health Service
Dean of Students Office
Facilities Management
Arizona Poison and Drug Information Center
Recorded updates during campus emergencies

A tab (\t) divides the two fields

A list of all the resources

awk: regex

awk 'match($0, /520-[0-9]+-[0-9]+/) {print substr($0,RSTART,RLENGTH)}' uanumbers.txt
520-621-8273
520-621-1790
520-626-6850
520-621-5279
520-621-6490
520-621-7057
520-621-3000
520-626-1222

[0-9]+ means one or digits from the range 0-9

A list of all the local phone numbers

awk: regex

FS (Field separator): \t
awk 'BEGIN {FS="\t"} {print $1}' uanumbers.txt
RESOURCE
University of Arizona Police Department (UAPD)
Risk Management and Safety
Office of Radiation, Chemical and Biological Safety
Arizona Institutional Biosafety Committee
Campus Health Service
Dean of Students Office
Facilities Management
Arizona Poison and Drug Information Center
Recorded updates during campus emergencies

awk: regex

FS (Field separator): \t
awk 'BEGIN {FS="\t"} {print $2}' uanumbers.txt
PHONE NUMBER
520-621-8273
520-621-1790
520-626-6850
520-621-5279
520-621-6490
520-621-7057
520-621-3000
800-222-1222
520-626-1222 (Tucson) 800-362-0101 (Toll free)

awk: regex

Find the local exchanges (to area code 520):
gawk 'match($0, /520-([0-9]+)/, arr) {print arr[1]}' uanumbers.txt
621
621
626
621
621
621
621
626

gawk exclusive:
arr[0] = entire match
arr[1] = submatch of 1st set of (…)
and so on…

awk: regex

Find the local exchanges (to area code 520) without duplicates:
gawk 'match($0, /520-([0-9]+)/, arr) {xch[arr[1]]=1}
END {for (x in xch) { print x}}'
uanumbers.txt
621
626

xch is an array we use to store the local exchange codes
arr[1] will be the local exchange code (used as key)
for the associative array xch
1 (assigned) is just a dummy value
(Note: Python dict = associative array)

awk: regex

Build a table of all the words used:
awk 'NR!=1 {for (i=1; i<=NF; i++) {word[$i]+=1}}
END {for (x in word) { printf "%12s %d\n", x,
word[x]}}' uanumbers.txt | sort –k2 -n

NR!=1 (pattern) skip 1st line (!= means not equal to)
NF = number of fields on a line
word = associative array of frequencies
| = pipe (output of awk into sort)
sort –k2 –n = command to sort on field 2 numerically (-n)

Arizona 3
and 3
of 3

Management 2
Safety 2
Office 2

Institutional 1
800-362-0101 1
800-222-1222 1
520-626-6850 1
…
520-621-1790 1
emergencies 1

…
during 1
campus 1
Police 1
Poison 1
Health 1
Center 1
Campus 1

…

not case insensitive

awk: regex

Build a table of all the words used (case-insensitive):
awk 'NR!=1 {for (i=1; i<=NF; i++) {word[tolower($i)]+=1}}
END {for (x in word) { printf "%12s %d\n", x, word[x]}}'
uanumbers.txt | sort –k2 -nr

tolower(string)
Return a copy of string, with each uppercase character in the string replaced with
its corresponding lowercase character. Nonalphabetic characters are left
unchanged. For example, tolower("MiXeD cAsE 123") returns "mixed case 123".
https://www.gnu.org/software/gawk/manual/html_node/String-
Functions.html

arizona 3
and 3
of 3

management 2
safety 2
office 2
campus 2

institutional 1
800-362-0101 1
…
520-621-1790 1
information 1
emergencies 1
university 1

…
biosafety 1
students 1
recorded 1
chemical 1
(tucson) 1

…

https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

awk: regex

Build a table of all the words used (no numbers, no
punctuation):
gawk 'NR!=1 {for (i=1; i<=NF; i++) {gsub(/[^A-Za-z]/, "", $i);
word[tolower($i)]+=1}} END {for (x in word) { printf "%12s
%d\n", x, word[x]}}' uanumbers.txt | sort -k2 -nr

gsub(regexp, replacement [, target])
Search target for all of the longest, leftmost, nonoverlapping matching substrings it can find
and replace them with replacement. The ‘g’ in gsub() stands for “global,” which means
replace everywhere.
https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

arizona 3
and 3
of 3

management 2
safety 2
office 2
campus 2

institutional 1
information 1
emergencies 1
university 1
facilities 1
department 1
biological 1
radiation 1
committee 1
biosafety 1
students 1
recorded 1
chemical 1
updates 1
service 1
tucson 1
police 1

https://www.gnu.org/software/gawk/manual/html_node/String-Functions.html

