LING 408/508: Computational
Techniques for Linguists

Lecture 12

Adminstrivia

* Homework 6 on awk out today

sandiway@sandiway-VirtualBox: ~

File Edit View Search Terminal Help
sandiway@sandiway-VirtualBox:~S$ which awk
Jusr/bin/awk
sandiway@sandiway-VirtualBox:~S which mawk
Jusr/bin/mawk

ndiway@sandiway-VirtualBo>

awk - pattern-directed scanning and processing language

SYNOPSIS

awk [-Ffs] [-v var=value] [-mrn] [-mfn] [-f prog [prog] [file ...]

DESCRIPTION

Awk scans each input file for 1lines that match any of a set of patterns specified

literally in prog or in one or more files specified as -f file. With each pattern there
can be an associated action that will be performed when a line of a file matches the
pattern. Each line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern. The file name

means the standard input. Any file of the form var=value is treated as an assignment, not

a file name, and is executed at the time it would have been opened if it were a file name.
The option -v followed by var=value is an assignment to be done before prog is executed;
any number of -v options may be present. -F fs option defines the input field separator

to be the regular expression fs.

awk

 Why awk?
* use the command line for
extracting textual data
* a pattern-matching language
e can be very fast ...
* https://brenocon.com/blog/2

009/09/dont-mawk-awk-the-
fastest-and-most-elegant-big-
data-munging-language/

When one of these newfangled “Big Data” sets comes your way, the very first thing you have to do is
data munging: shuffling around file formats, renaming fields and the like. Once you're dealing with
hundreds of megabytes of data, even simple operations can take plenty of time.

For one recent ad-hoc task I had — reformatting 1GB of textual feature data into a form Matlab and R
can read — I tried writing implementations in several languages, with help from my classmate Elijah.
The results really surprised us:

Language Time Speed (vs. Lines of Notes Type
(min:sec) gawk) code

mawk 1:06 7.8x 3 Mike Brennan’s Awk, system default on VM
Ubuntu/Debian Linux.

java 1:20 6.4x 32 version 1.6 (-server didn’t matter) VM+JIT

c-ish c++ 1:35 5.4X 42 g++ 4.0.1 with -O3, using stdio.h Native

python 2:15 3.8x 20 version 2.5, system default on OSX 10.5 VM

perl 3:00 2.9x 17 version 5.8.8, system default on OSX 10.5 VM

nawk 6:10 1.4% 3 Brian Kernighan‘s “One True Awk”, system ?
default on OSX, *BSD

c++ 6:50 1.3X 48 g++ 4.0.1 with -O3, using fstream, Native
stringstream

ruby 7:30 1.1x 22 version 1.8.4, system default on OSX 10.5; also Interpreted

tried 1.9, but was slower

gawk 8:35 X 3 GNU Awk, system default on RedHat/Fedora Interpreted
Linux

https://brenocon.com/blog/2009/09/dont-mawk-awk-the-fastest-and-most-elegant-big-data-munging-language/

awk

« Powerful pattern-matching is at the heart of awk:
e https://www.gnu.org/software/gawk/manual/gawk.html
e https://www.gnu.org/software/gawk/manual/html node/Regexp.html

A pattern-action statement has the form

pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-

action statements are separated by newlines or semicolons.

https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/html_node/Regexp.html

awk

* Manpage:

http://manpages.ubuntu.com/manpages/bionic/en/manl/awk.1plan9.html

An input line is normally made up of fields separated by white space, or

by regular
fields are denoted $1, $2, .

.., while $0 refers to the entire line.
If FS is null, the input line is split into one field per character.

expression FS. The

Regular expressions (regex):
http://manpages.ubuntu.com/manpages/bionic/en/man7/regex.7.html

http://manpages.ubuntu.com/manpages/bionic/en/man1/awk.1plan9.html
http://manpages.ubuntu.com/manpages/bionic/en/man7/regex.7.html

awk

* Manpage:
http://manpages.ubuntu.com/manpages/bionic/en/manl/awk.1plan9.html

if (expression) statement [else statement]

uhile(expression) statement * a bit like the Bash shell programming language...
for(expression ; expression ; expression) statement * a bit like Perl, actually Perl is a bit like awk

for(var in array) statement

do statement while(expression)

break

continue

{ [statement ...] }

expression # commonly var = expression

print [expression-list] [> expression]

printf format [, expression-list] [> expression]

return [expression]

next # skip remaining patterns on this input line
nextfile # skip rest of this file, open next, start at top

delete array|[expression]# delete an array element

delete array # delete all elements of array

exit [expression] # exit immediately; status is expression

http://manpages.ubuntu.com/manpages/bionic/en/man1/awk.1plan9.html

awk

« awk is a very useful command

* it allows you process files line by line and extract matching information
* Words on a line:

e $lisword#linaline

e $2isword #2 in a line (separated from #1 by space(s)) etc.
* Some simple Awk code:

« print $3 means print word #3 in a line

* vname=0 set variable vname to 0 (note: no S)

* (arithmetic expressions ok on the right side of the =, e.g. vname=vname+2)
« if (.) { .. } else { .. } conditional:e.g.$1>=3
separates statements

man awk for examples

* Syntax:
« awk 'BEGIN { ..1.. } { ..2.. } END { ..3.. }' data.txt
* means execute awk code block{ ..1.. } at the beginning
* then process each line of data.txt using awk code block { ..2.. }
* then at the end execute awk code block {..3.. }
* BEGIN{..1..} is optional
* END{..3..}is also optional

awk

* Manpage:
http://manpages.ubuntu.com/manpages/bionic/en/manl/awk.1plan9.html

EXAMPLES

length($0) > 72

Print lines longer than 72 characters.

{ print $2, $1 }

Print first two fields in opposite order.

BEGIN { FS = ", [\t]*[[\t]+" }
{ print $2, $1 }
Same, with input fields separated by comma and/or blanks and tabs.

{s +=$1}
END { print "sum is", s, " average is", s/NR }

Add up first column, print sum and average.

/start/, /stop/

Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"

exit }

http://manpages.ubuntu.com/manpages/bionic/en/man1/awk.1plan9.html

awk

* awk is locale sensitive: Ubuntu 18.04 LTS (and later) supports UTF-8 by default

sandiway@sandiway-VirtualBox: ~

File Edit View Search Terminal Help

sandiway@sandiway-VirtualBox:~$ which awk

Jusr/bin/awk

sandiway@sandiway-VirtualBox:~$ which mawk

Jusr/bin/mawk

sandiway@sandiway-VirtualBox:~$ echo SLANG

en US.UTF-8

sandiway@sandiway-VirtualBox:~$ more /etc/default/locale
File generated by update-locale

LANG="en_ US.UTF-8"

sandiway@sandiway-VirtualBox:~$ I

awk

° Exa m ple — . B surnames.txt

Rodriguez
Hernéndez
Pérez 3.35
Garcia 3.25
Martin 2.21

* Top 30 surnames and percentages
in the Canary Islands according to
Wlklpedla Suarez 1.38

Séanchez 1.29

* https://en.wikipedia.org/wiki/List Lépez 1.21

Cabrera
Ramos 0.88

of the most common surnames Medina ©.87

Fernandez

in Europe Morales 0.73

Delgado 0.70
Marrero 0.70

* Filename: surnames. txt Leén 0.69

Alonso 0.61
Herrera 0.59

* 3 fields: rank, name, and percentage Cruz .58

Dominguez

of population Gutiérrez
Reyes 0.50

* fields separated by [TAB] (ASCII 9) Torres 0.48

Alvarez 0.66

Santana 2.18
Diaz 1.86

LCoNOOUAWNRE

Rivero 0.44
Armas 0.42
Trujillo

Note accent marks: UTF-8

https://en.wikipedia.org/wiki/List_of_the_most_common_surnames_in_Europe

awk

e Example:

* Top 30 surnames and percentages
in the Canary Islands according to
Wikipedia

* https://en.wikipedia.org/wiki/List

of the most common surnames
in Europe

* Filename: surnames.csv

* 3 fields: rank, name, and percentage
of population

* fields separated by a single comma

fl,Gonzalez,4.79
2,Rodriguez,4.64
3,Hernédndez,4.01
4,Pérez,3.35
5,Garcia,3.25
6,Martin,2.21
7,Santana,2.18
8,Diaz,1.86
9,Suérez,1.38
10,Sanchez,1.29
11,L6pez,1.21
12,Cabrera,1.18
13,Ramos,0.88

14 ,Medina, 0.87
15,Fernandez,0.75
16,Morales,0.73
17,Delgado,0.70
18,Marrero,0.70
19,Lebn,0.69
20,Alonso0,0.61
21,Herrera,0.59
22,Cruz,0.58
23,Dominguez,0.55
24,Gutiérrez,0.52
25,Reyes, 0.50
26,Torres,0.48
27,Alvarez,0.66
28,Rivero,0.44
29,Armas,0.42
30,Trujillo,0.40

B surnames.csv

https://en.wikipedia.org/wiki/List_of_the_most_common_surnames_in_Europe

awk: FS variable

4.5.1 Whitespace Normally Separates Fields

Fields are normally separated by whitespace sequences (spaces, TABs, and newlines), not by single spaces. Two spaces in a row do not
delimit an empty field. The default value of the field separator FS is a string containing a single space, " ".If awk interpreted this value
in the usual way, each space character would separate fields, so two spaces in a row would make an empty field between them. The

reason this does not happen is that a single space as the value of FS is a special case—it is taken to specify the default manner of
delimiting fields.

awk 'BEGIN { OFS=""; print "x",FS,"x" }'
* ok

* Notes:
e OFS (Output Field Separator):

* "In the output, the [print] items are normally separated by single spaces."
e awk strings:

* "A string constant consists of a sequence of characters enclosed in double quotation marks."

awk

* Run the following awk one-liner to figure out what the code does:
1.awk '{print $2}' surnames.txt

awk

* Run the following awk one-liner to figure out what the code does:
2. awk '{print $2}' surnames.csv

awk

* Run the following awk one-liner to figure out what the code does:

3. awk 'BEGIN {FS=","} {print $2}' surnames.csv
4. awk -F, '{print $2}' surnames.csv

awk

* Run the following awk one-liner to figure out what the code does:
5. awk '{if ($3>=1) {print $2}}' surnames.txt
6. awk '{if ($3>=1.5) {print $2, $3}}' surnames.txt

* Note:

* "A numeric constant stands for a number. This number can be an integer, a decimal
fraction, or a number in scientific (exponential) notation."

Homework 6

e Write awk code to:

1. print a table of and calculate the total percentage of population for the
top 10, 20 and 30 surnames

2. read and print out the table with table headings aligned with the field
values (use printf)

Rank Name Approximate percentage
1 Gonzélez | 4.79
2 Rodriguez | 4.64
3 Hernandez | 4.01
4 Pérez 3.35
5 Garcia 3.25

Homework 6

 for printf documentation, read:
https://www.gnu.org/software/gawk/manual/html node/Printf.html
HPrintf

5.5 Using print £ Statements for Fancier Printing

For more precise control over the output format than what is provided by print, use print£f. With printf you can specify the width to use for each item, as well as various
formatting choices for numbers (such as what output base to use, whether to print an exponent, whether to print a sign, and how many digits to print after the decimal point).

* Basic Printf: Syntax of the printf statement.
* Control Letters: Format-control letters.
* Format Modifiers: Format-specification modifiers.

* Printf Examples: Several examples.

https://www.gnu.org/software/gawk/manual/html_node/Printf.html

Homework 6

* Due Monday by midnight

e Usual rules:

* email to me
* one PDF file
 subject: Homework 6 408/508 Your name

