
LING 408/508: Computational
Techniques for Linguists

Lecture 11

Today's Topics

• Let's practice learning how to write shell scripts …

Exercise 1: print arguments to a script

• Write a bash shell script that simple accepts command line arguments
and prints out the number of arguments, and each argument
numbered on a separate line
• Example:
• bash args.sh a b c
Args: 3
#1: a
#2: b
#3: c

What you need to know to solve this:
1. $#
2. $1
3. shift
4. store a variable
5. increment a value by 1

Exercise 1: print arguments to a script

Many different ways to write the solution…
args1.sh vs. args2.sh

Exercise 2: deleting files

Exercise 2: deleting files

Remove File/Directory
• rm removes a file (dangerous!)
• rm –d removes a directory (empty)
• rm –r recursive remove (extreme danger!)
• rm –rf forced recursive remove (!!!)

• Examples:
• touch file.txt
• rm file.txt (you have default write permission)
• touch protected.txt
• chmod u-w protected.txt (u = user, -w = remove write permission)
• rm protected.txt
override r--r--r-- sandiway/staff for protected.txt?
• rm –f protected.txt (no interaction: forced removal)
• rm –i file.txt (ask it to ask you for confirmation)
remove file.txt?

Exercise 2: deleting files

best used in interactive shell
• can put alias shortcut in Terminal startup ~/.bash_profile (MacOS) or ~/.bashrc

• alias rm="rm -i" not recursively expanded
(considered dangerous: why?)

• alias (list defined aliases)
• unalias rm (remove alias)
• Aliases don't work in shell scripts (rm.sh):

#!/bin/bash
if [$# -ne 1]; then

echo "usage: filename"
exit 1

fi
touch $1
rm $1 rm –i won't

be called!

define a function in ~/.bash_profile
(absolute path: otherwise recursive)
rm () {

/bin/rm -i "$@"
}
export –f rm

At least two reasons:
1. another computer
2. shell scripts

Other commands with -i

• -i (interactive confirm option)
before overwriting a file

• mv -i rename file
• cp -i copy file

Exercise 3: double-spacing a text file

• Write a script that reads each line of a file, then writes the line back
out, but with an extra blank line following. This has the effect of
double-spacing the file.

What you need to know to solve this:
1. read
2. test [[…]]
3. while loop

Exercise 3: double-spacing a text file

Exercise 3: double-spacing a text file

Exercise 3: double-spacing a text file

Exercise 3: double-spacing a text file
test [[..]]

Exercise 3: double-spacing a text file
test [[..]]

Exercise 3: double-spacing a text file
test [[..]]

Exercise 3: double-spacing a text file

• double-spacing the file (doublespace.sh):

-n = non-zero

also works

read –r
If this option is given, backslash does not act as an escape character.

Exercise 3: double-spacing a text file

Exercise 3: double-spacing a text file

• double-spacing the file (doublespace2.sh):

Exercise 3: double-spacing a text file

• whitespace trim problem workaround:

Exercise 4: all except blank lines

• Changing the line spacing of a text file:
• write a script to echo all lines of a file except for blank lines

(nonblank.sh).

Useful tidbits

• Pre-programmed interaction:
• (here document: inline file)

rm () {
/bin/rm -i "$@"

}
export -f rm

#!/bin/bash
if [$# -ne 1]; then

echo "usage: filename"
exit 1

fi
touch $1
rm $1

confirm.sh

Useful tidbits

bash confirm.sh <<EOF
y
EOF

Useful tidbits
bash confirm.sh <<<y

