
LING 388: Computers and Language
Lecture 9

Today's Topics

• Python:
• eval()
• sorting: sorted() and list.sort()
• key= sort parameter
• more on lists: stacks, queues and reversed() and .reverse()

• Homework 5

eval()

sorted(list) vs. list.sort()

Mutable Fresh copy (non-mutable)

• Let's talk about the key parameter!

key= sort parameter

https://docs.python.org/3/howto/sorting.html

https://docs.python.org/3/howto/sorting.html

key= sort parameter

• Useful for sorting records

Python Lists

• Lists as stacks

• Lists as queues

https://visualgo.net/en/list?slide=4

https://www.appcoda.com/ios-concurrency/

Only the top of the
stack is

immediately
accessible

Front and rear are
accessible

Python List as a Stack

• Note that .pop() removes from
the right end and .append() adds
to the right end.
• How to save the element of a list

popped off the stack? Use a
variable, e.g. x:
• x = list.pop()

• Stacking operations are:
• list.append()
• list.pop()

Python List as a Stack

• Suppose we have
list = ['a', 'c', 'b']
• How do we flip the order of b and c using stack operations?
• Answer:

>>> x1 = list.pop()
>>> x2 = list.pop()
>>> list.append(x1)
>>> list.append(x2)

Python List as a Queue

• Method append() to add to right
end of the queue
• list[0] gives us the head, i.e.

left end, of the queue
• Note: x = list[0] saves the

head of the queue into variable
x
• list = list[1:] deletes the

head of the queue from the
queue
• Also can use del list[0]

EXAMPLE:

Python List as a Queue

• Queuing operations are:
• list.append(newitem)
• del list[0]
• first = list[0]

• first = first in queue

• Note:
list, first and newitem are
variable names; you can use any
name you like

• Recall stacking operations are:
• list.append(newitem)
• top = list.pop()

• top = top of stack

reversed()

>>> reversed(['a','b','c'])
<list_reverseiterator object at 0x10f0fa850>
>>> list(reversed(['a','b','c']))
['c', 'b', 'a']
>>> for x in reversed(['a','b','c']):
... print(x)
...
c
b
a

.reverse()

Similar to .sort() vs. sorted():
>>> ['a','b','c'].reverse()
>>> x = ['a','b','c']
>>> x.reverse()
>>> x
['c', 'b', 'a']
>>>

Homework 5

• Through the Looking-Glass (1872), by Charles Dodgson, AKA Lewis
Carroll is a sequel to Alice's Adventures in Wonderland (1865).
• Step1:
• Go to Project Gutenberg (www.gutenberg.org)
• Find it and download the Plain Text (UTF-8 format) file
• You might want to rename it to something memorable, e.g. looking-
glass.txt
• Put it in the same directory as where you run your Python

http://www.gutenberg.org/

Homework 5

• Step 2:
• Open the file in a text editor, e.g.

NotePad (Windows) or TextEdit
(macOS) etc.
• Delete the lines that are NOT part

of the book
• Save the file as Plain Text

Homework 5

Homework 5

• Step 3: load the file as a String into Python
• String stored as a variable raw below.
• fh = open(filename)
• raw = fh.read()
• what does len(raw) report?

Homework 5

• Step 4:
• nltk has a nltk.word_tokenize(string) function to convert an English

language String into a list of words.
• import nltk
• words = nltk.word_tokenize(raw)
• what does len(words) report?

Homework 5

• Step 5:
• Calculate the average number of characters per word of the entire

book.
• compare your answer to that for carroll-alice.txt
• (See Exercise 2 from previous lecture.)

Homework 5

• Step 6:
• Compute the word length distribution for looking_glass.txt.
• do it both for the book AND the vocabulary of the book
• see Exercises last lecture and nltk.FreqDist()
• Compare the graphs with carroll-alice.txt (same author)
• Are they similar or different?

Homework 5

• Submit to sandiway@arizona.edu
• SUBJECT: 388 Homework 5 YOUR NAME
• One PDF file only
• include Python terminal and graph screenshots in your answer

• Deadline:
• midnight Monday
• we will review the homework on Tuesday

mailto:sandiway@arizona.eduSUBJECT
mailto:sandiway@arizona.eduSUBJECT

