
LING 388: Computers and Language
Lecture 25

Today's Topics

• Homework 9 Review
• Homework 10: Term project proposals please!

1. just one paragraph or page, email to me
2. describe what you want to do
3. should not be too small a project
4. should not be too big
5. must be related to something taught in class this semester

• Some final words about Masked Language Models
• Syntax: some parsers available online

Homework 9 Review

• Q1: Vector arithmetic
• Idea: dogs – dog computes

a NUM vector in direction PL to
SG

• Test it on irregular plural nouns:
can it correctly pick the
singular?

>>> import gensim.downloader
>>> model = gensim.downloader.load('glove-wiki-gigaword-50')

17/30 right, 13 wrong

Homework 9 Review

Question 2: can you find two good examples
of antonym pairs satisfying equations:

1. slow + <polar adjective> - quick, and
2. quick + <antonym> - slow = <polar adjective>

small

large

slow -
quick

quick -
slow

Homework 9 Review

Question 2: many don't work
• e.g. white <-> black works but not tiny or huge

>>> ['{} {:.2f}'.format(w,p) for (w,p) in
model.most_similar(positive=['slow','white'],negative=['quick'],topn=3)]
['black 0.79', 'gray 0.78', 'covered 0.74']
>>> ['{} {:.2f}'.format(w,p) for (w,p) in
model.most_similar(positive=['quick','black'],negative=['slow'],topn=3)]
['white 0.81', 'red 0.73', 'green 0.73']
>>> ['{} {:.2f}'.format(w,p) for (w,p) in
model.most_similar(positive=['slow','tiny'],negative=['quick'],topn=3)]
['small 0.73', 'dense 0.72', 'parts 0.72']
>>> ['{} {:.2f}'.format(w,p) for (w,p) in
model.most_similar(positive=['slow','huge'],negative=['quick'],topn=3)]
['massive 0.79', 'enormous 0.76', 'partly 0.76']

Homework 9 review

• Plenty of pairs if you do a search …

MLM

Masked Language Modeling (MLM):
>>> from transformers import pipeline
>>> classifier_large = pipeline("fill-mask", model='roberta-large')

MLM: significance of the period (.)
• classifier_large('Noam Chomsky is
a <mask>', top_k=7)]
1. ['Noam Chomsky is a liar

0.09',
2. 'Noam Chomsky is a genius

0.06',
3. 'Noam Chomsky is a fraud

0.05',
4. 'Noam Chomsky is a traitor

0.02',
5. 'Noam Chomsky is a hero

0.02',
6. 'Noam Chomsky is a psychopath

0.02',
7. 'Noam Chomsky is a Nazi

0.02']

• classifier_large('Noam Chomsky is
a <mask>.', top_k=7)]
1. ['Noam Chomsky is a genius.

0.09',
2. 'Noam Chomsky is a radical.

0.04',
3. 'Noam Chomsky is a

whistleblower. 0.04',
4. 'Noam Chomsky is a visionary.

0.04',
5. 'Noam Chomsky is a prophet.

0.03',
6. 'Noam Chomsky is a liar.

0.03',
7. 'Noam Chomsky is a

revolutionary. 0.03']

Constituency Parsing

• Requires a grammar (of English) – that's the knowledge of language
• Parser = a program that finds a parse using the grammar
• Constituents are phrases: e.g. NP, VP, PP and S.
• Finding a parse involves (proper) algorithms for dealing with grammars

• otherwise, no guarantee of finding a parse (if one exists)
• if one exists, return that structural description, i.e. parse.
• if structurally ambiguous, proper response is to return all parses
• if sentence is ungrammatical, proper response is no parse

• i.e. detect that the sentence is bad,
• and not just emit some random, incorrect parse

Looking ahead: writing a grammar

• Using nltk:
$ python
>>> import nltk
>>> g = open('g.txt').read()
>>> g
"s -> y x3\ns -> x1 z\ns -> y z\ny -> x1 x2\nz -> x2 x3\nx1 -> 'w1'\nx2 -> 'w2'\nx3
-> 'w3'\n"
>>> cfg = nltk.CFG.fromstring(g)
>>> cfg
<Grammar with 8 productions>
>>> p = nltk.ChartParser(cfg)
>>> for tree in p.parse(['w1','w2','w3']):
... tree.draw()
...

Parse could be a Picture

https://creator.nightcafe.studio

https://creator.nightcafe.studio/

Constituency Parsing

• Parsers are available online
(trained on large corpora).
• Stanford CoreNLP
• Stanford Stanza
• Example:

• Berkeley Neural Parser
• https://parser.kitaev.io

https://parser.kitaev.io/

Constituency Parsing

References:
• A Minimal Span-Based Neural

Constituency Parser. Mitchell Stern,
Jacob Andreas, Dan Klein. ACL 2017.

• Constituency Parsing with a Self-
Attentive Encoder. Nikita Kitaev and
Dan Klein. ACL 2018.

• Multilingual Constituency Parsing
with Self-Attention and Pre-
Training. Nikita Kitaev, Steven Cao,
Dan Klein. ACL 2019.

Notice: it uses BERT embeddings
claim: the best there is!

https://arxiv.org/abs/1705.03919
https://arxiv.org/abs/1705.03919
https://arxiv.org/abs/1805.01052
https://arxiv.org/abs/1805.01052
https://arxiv.org/abs/1812.11760
https://arxiv.org/abs/1812.11760
https://arxiv.org/abs/1812.11760

Constituency Parsing

https://corenlp.runhttp://stanza.run

https://corenlp.run/
http://stanza.run/

Constituency Parsing

• Let's try it:
1. John saw the man
2. John saw the man with a telescope
3. *John saw (no object)
4. *saw the man (no subject)
5. *John saw man the (determiner-noun order reversed)
6. *John the man saw (like a head-final language)
7. *saw John the man (like a VSO language)

Constituency Parsing

• Yoda speak involves displacement:
• (still comprehensible to the native English speaker)
• “Found someone, you have, I would say, hmmm?”
• “Much to learn, you still have.”
• “Truly wonderful, the mind of a child is.”
• “Lost a planet, Master Obi-Wan has.”
• “That group back there, soon discovered will be.”

• Examples above from "An Unusual Way of Speaking, Yoda Has" by Adrienne
LaFrance in The Atlantic (Dec 2015).
• https://www.theatlantic.com/entertainment/archive/2015/12/hmmmmm/420798/

https://www.theatlantic.com/entertainment/archive/2015/12/hmmmmm/420798/

