
LING 388: Computers and Language
Lecture 23



Today's Topics

• Fast forward from 1948 to the present day
• What's hot?
• Artificial Intelligence:

• Large Language Models (LLMs)
• ChatGPT



Today's Topics

1. Language Modeling Task 
• predict what's to come next

2. Masked Language Modeling Task 
• predict something surrounded by context

3. Masked Language Modeling Task: bias? 
• gender bias

4. Sentiment Analysis
• positive/negative sentiment



Transformers

• Introduced in 2017, from hundreds of millions of parameters to billions of 
parameters

• Transformer Neural Net Architecture: 
Encoders (generate embeddings),  and Decoders (output text)

encoder-only

decoder-only

encoder-decoder Google T-5

encoder-decoder

huggingface.co

https://transformer.huggingface.co/


Transformers

• Huge carbon footprint: large dataset, billions of parameters: lots of electricity

huggingface.co

https://transformer.huggingface.co/


Generative AI

• Guardian article:
• https://www.theguardian.com/tech

nology/2024/apr/08/time-is-
running-out-can-a-future-of-
undetectable-deepfakes-be-
avoided

https://www.theguardian.com/technology/2024/apr/08/time-is-running-out-can-a-future-of-undetectable-deepfakes-be-avoided
https://www.theguardian.com/technology/2024/apr/08/time-is-running-out-can-a-future-of-undetectable-deepfakes-be-avoided
https://www.theguardian.com/technology/2024/apr/08/time-is-running-out-can-a-future-of-undetectable-deepfakes-be-avoided
https://www.theguardian.com/technology/2024/apr/08/time-is-running-out-can-a-future-of-undetectable-deepfakes-be-avoided
https://www.theguardian.com/technology/2024/apr/08/time-is-running-out-can-a-future-of-undetectable-deepfakes-be-avoided


The AI Picture

Jeanne Calment
https://www.newyorker
.com/magazine/2020/0
2/17/was-jeanne-
calment-the-oldest-
person-who-ever-lived-
or-a-fraud

https://www.newyorker.com/magazine/2020/02/17/was-jeanne-calment-the-oldest-person-who-ever-lived-or-a-fraud
https://www.newyorker.com/magazine/2020/02/17/was-jeanne-calment-the-oldest-person-who-ever-lived-or-a-fraud
https://www.newyorker.com/magazine/2020/02/17/was-jeanne-calment-the-oldest-person-who-ever-lived-or-a-fraud
https://www.newyorker.com/magazine/2020/02/17/was-jeanne-calment-the-oldest-person-who-ever-lived-or-a-fraud
https://www.newyorker.com/magazine/2020/02/17/was-jeanne-calment-the-oldest-person-who-ever-lived-or-a-fraud
https://www.newyorker.com/magazine/2020/02/17/was-jeanne-calment-the-oldest-person-who-ever-lived-or-a-fraud


Language Modeling

• Write with Transformer
• https://transformer.huggingface.co
• 5 LLMs
• grammatical completion, 
• cf. n-gram models

https://transformer.huggingface.co/


roBERTa
A Transformer architecture neural net model that came after BERT

BERT: encoder only model: text to (contextual) embeddings
Robustly Optimized BERT Approach

BERT = Bidirectional Encoder Representations from Transformers
Larger training dataset. 

Masked language modeling (no NSP)
'Tucson is the <mask> of Arizona.'



Transformers 
Python library

• https://huggingface.co
• Install Transformers into 

Python (command-line):
• pip install 
transformers

• pip3 install 
transformers

https://huggingface.co/


Masked language modeling: distilroberta-base

• From https://huggingface.co/tasks/fill-mask
python
>>> from transformers import pipeline
>>> classifier = pipeline("fill-mask")
No model was supplied, defaulted to distilroberta-base and revision ec58a5b 
(https://huggingface.co/distilroberta-base).
Using a pipeline without specifying a model name and revision in production is not 
recommended.
config.json: 100%|██████████████████████████████| 480/480 [00:00<00:00, 267kB/s]
pytorch_model.bin: 100%|█████████████████████| 331M/331M [00:37<00:00, 8.82MB/s]
tokenizer_config.json: 100%|█████████████████| 25.0/25.0 [00:00<00:00, 13.3kB/s]
vocab.json: 100%|████████████████████████████| 899k/899k [00:00<00:00, 3.38MB/s]
merges.txt: 100%|████████████████████████████| 456k/456k [00:00<00:00, 3.04MB/s]
tokenizer.json: 100%|██████████████████████| 1.36M/1.36M [00:00<00:00, 7.96MB/s]

can specify model=

https://huggingface.co/tasks/fill-mask


Masked language modeling: distilroberta-base

>>> classifier = pipeline('fill-mask')
No model was supplied, defaulted to distilroberta-base and revision 
ec58a5b (https://huggingface.co/distilroberta-base).
Using a pipeline without specifying a model name and revision in 
production is not recommended.
>>> classifier('Tucson is the <mask> of Arizona.')
1. [{'score': 0.601342499256134, 'token': 2318, 'token_str': ' governor', 

'sequence': 'Tucson is the governor of Arizona.'},
2.  {'score': 0.12795265018939972, 'token': 589, 'token_str': ' 

University', 'sequence': 'Tucson is the University of Arizona.'},
3.  {'score': 0.10602974146604538, 'token': 3383, 'token_str': ' 

Governor', 'sequence': 'Tucson is the Governor of Arizona.'}, 
4. {'score': 0.02803342044353485, 'token': 3647, 'token_str': ' mayor', 

'sequence': 'Tucson is the mayor of Arizona.'}, 
5. {'score': 0.02324029989540577, 'token': 18676, 'token_str': ' ACLU', 

'sequence': 'Tucson is the ACLU of Arizona.'}]



distilroberta-base

• From https://huggingface.co/distilbert/distilroberta-base
• This model is a distilled version of the RoBERTa-base model.

• DistilBERT is a transformers model, smaller and faster than BERT, which was 
pretrained on the same corpus in a self-supervised fashion, using the BERT 
base model as a teacher.

• Case sensitive
• The model has 6 layers, 768 dimension and 12 heads, totalizing 82M 

parameters
• cf. 125M parameters for RoBERTa-base

https://huggingface.co/distilbert/distilroberta-base
https://huggingface.co/roberta-base


roberta-base/roberta-large

• From https://huggingface.co/FacebookAI/roberta-base
• roberta-base: BERTBASE (L = 12, H = 768, A = 12, 110M params). 
• roberta-large: BERTLARGE (L = 24, H = 1024, A = 16, 355M parameters) 
• The RoBERTa model was pretrained on 160GB of text:

• BOOKCORPUS (Zhu et al., 2015) plus English WIKIPEDIA. Original data used to train BERT. (16GB). 
• CC-NEWS, which we collected from the English portion of the CommonCrawl News dataset (Nagel, 

2016). The data contains 63 million English news articles crawled between September 2016 and 
February 2019. (76GB after filtering).

• OPENWEBTEXT (Gokaslan and Cohen, 2019), an open-source recreation of the WebText corpus 
described in Radford et al. (2019). The text is web content extracted from URLs shared on Reddit with at 
least three upvotes. (38GB) 

• STORIES, a dataset introduced in Trinh and Le (2018) containing a subset of CommonCrawl data filtered 
to match the story-like style of Winograd schemas. (31GB). 

• Pretrained with the Masked language modeling (MLM) objective.
• selects 15% of the input tokens for possible replacement. Of the selected tokens, 80% are replaced with 

[MASK], 10% are left unchanged, and 10% are replaced by a randomly selected vocabulary token. 

https://huggingface.co/FacebookAI/roberta-base


Masked language modeling: roberta-large

• Let's see if going from 82M parameters (distilroberta-base) 
to 355M parameters (roberta-large) helps.

 >>> classifier = pipeline('fill-mask', model='roberta-large')
config.json: 100%|██████████████████████████████| 482/482 [00:00<00:00, 
284kB/s]
pytorch_model.bin: 100%|███████████████████| 1.43G/1.43G [02:50<00:00, 
8.35MB/s]
tokenizer_config.json: 100%|█████████████████| 25.0/25.0 [00:00<00:00, 
5.12kB/s]
vocab.json: 100%|████████████████████████████| 899k/899k [00:00<00:00, 
2.52MB/s]
merges.txt: 100%|████████████████████████████| 456k/456k [00:00<00:00, 
2.26MB/s]
tokenizer.json: 100%|██████████████████████| 1.36M/1.36M [00:00<00:00, 
2.76MB/s]



Masked language modeling: roberta-large
>>> classifier('Tucson is the <mask> of Arizona.')
1. [{'score': 0.9881079792976379, 'token': 812, 'token_str': ' 

capital', 'sequence': 'Tucson is the capital of Arizona.'}, 
2. {'score': 0.009832077659666538, 'token': 1867, 'token_str': ' 

Capital', 'sequence': 'Tucson is the Capital of Arizona.'}, 
3. {'score': 0.0008674986311234534, 'token': 6107, 'token_str': ' 

Capitol', 'sequence': 'Tucson is the Capitol of Arizona.'}, 
4. {'score': 0.00030904842424206436, 'token': 589, 'token_str': ' 

University', 'sequence': 'Tucson is the University of 
Arizona.'}, 

5. {'score': 0.00013980583753436804, 'token': 1144, 'token_str': ' 
heart', 'sequence': 'Tucson is the heart of Arizona.'}]



Summary

'Tucson is the <mask> of Arizona.'
distlroberta-base
• 0.6013: governor
• 0.1280: University
• 0.1060: Governor
• 0.0280: mayor
• 0.0232: ACLU

roberta-large
• 0.9881: capital
• 0.0098: Capital
• 0.0009: Capitol
• 0.0003: University
• 0.0001: heart



Masked language modeling: bias?

Example:
>>> classifier2 = pipeline('fill-mask', model='roberta-large')
>>> classifier1 = pipeline('fill-mask')
>>> preds = classifier1("<mask> is a man's job.", top_k=10)
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
['This 0.107', 'Politics 0.030', 'It 0.025', 'That 0.022', 'Life 0.021', 
'Privacy 0.015', 'Sex 0.012', 'Football 0.012', ' journalism 0.010', 'Education 
0.009']
>>> preds = classifier2("<mask> is a man's job.", top_k=10)
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
['This 0.459', 'It 0.250', 'That 0.122', 'War 0.058', 'Politics 0.016', 
'Security 0.016', 'Fighting 0.006', 'Football 0.004', 'Defense 0.004', 'Sex 
0.003']



Masked language modeling: bias?

Example:
>>> preds = classifier1("<mask> is a woman's job.", top_k=10)
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
['This 0.155', 'Sex 0.033', 'It 0.029', 'That 0.024', 'Life 0.012', ' sex 
0.011', 'Privacy 0.010', 'Politics 0.008', ' This 0.008', 'Here 0.007']
>>> preds = classifier2("<mask> is a woman's job.", top_k=10)
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
['This 0.553', 'It 0.192', 'That 0.132', 'Education 0.015', 'Security 
0.010', 'Politics 0.007', 'Writing 0.006', 'War 0.004', 'Sex 0.004', 'She 
0.004']



Masked language modeling: bias?

Example:
>>> preds = classifier1("A woman works at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' Starbucks 0.125', ' Walmart 0.071', ' Costco 0.027', ' UPS 0.026', ' 
Microsoft 0.025']
>>> preds = classifier2("A woman works at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' home 0.217', ' Starbucks 0.216', ' work 0.070', ' Walmart 0.038', ' 
Subway 0.028']



Masked language modeling: bias?

Example:
>>> preds = classifier1("A man works at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' Starbucks 0.126', ' Walmart 0.082', ' Costco 0.032', ' FedEx 0.026', ' 
Subway 0.022']
[' Starbucks 0.125', ' Walmart 0.071', ' Costco 0.027', ' UPS 0.026', ' 
Microsoft 0.025']
>>> preds = classifier2("A man works at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' home 0.370', ' work 0.085', ' Starbucks 0.064', ' night 0.062', ' Subway 
0.016']
[' home 0.217', ' Starbucks 0.216', ' work 0.070', ' Walmart 0.038', ' Subway 
0.028']



Masked language modeling: bias?

• Example:
>>> preds = classifier1("A man is better than a woman at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' all 0.444', ' work 0.094', ' heart 0.065', ' birth 0.045', ' chess 0.016']
>>> preds = classifier2("A man is better than a woman at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' everything 0.090', ' this 0.052', ' cooking 0.051', ' math 0.037', ' chess 0.034']
>> preds = classifier1("A woman is better than a man at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' all 0.367', ' work 0.092', ' heart 0.083', ' birth 0.034', ' chess 0.026']
>>> preds = classifier2("A woman is better than a man at <mask>.")
>>> ['{} {:.3f}'.format(p['token_str'],p['score']) for p in preds]
[' everything 0.155', ' cooking 0.063', ' this 0.049', ' math 0.036', ' chess 0.029']



formatstring.format(arguments)
• https://docs.python.org/3/tutorial/inputoutput.html#the-string-format-method

• '{:.3f}'.format(p['score'])

https://docs.python.org/3/tutorial/inputoutput.html


formatstring.format(arguments)
• https://docs.python.org/3/library/string.html#formatstrings
• Format strings contain “replacement fields” surrounded by curly braces {}.
• Anything that is not contained in braces is considered literal text, which is copied 

unchanged to the output.
• '{:.3f}'.format(p['score'])

{[.precision][type]}

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html


Sentiment Analysis

• Example:
>>> sentiment = pipeline("sentiment-analysis")
No model was supplied, defaulted to distilbert-base-uncased-
finetuned-sst-2-english and revision af0f99b 
(https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-
english).
Using a pipeline without specifying a model name and revision in 
production is not recommended.



Sentiment Analysis

• Oliver Twist:
>>> sentiment("""For a long time after it was ushered into this world of sorrow and
... trouble, by the parish surgeon, it remained a matter of considerable
... doubt whether the child would survive to bear any name at all; in which
... case it is somewhat more than probable that these memoirs would never
... have appeared; or, if they had, that being comprised within a couple of
... pages, they would have possessed the inestimable merit of being the
... most concise and faithful specimen of biography, extant in the
... literature of any age or country.""")
[{'label': 'POSITIVE', 'score': 0.9754583239555359}]
>>> sentiment("This was no very great consolation to the child.")
[{'label': 'NEGATIVE', 'score': 0.9988021850585938}]



Sentiment Analysis

• Nicholas Nickleby:
>>> sentiment("I am afraid he is dead now.")
[{'label': 'NEGATIVE', 'score': 0.9988232254981995}]
>>> sentiment("'It's very odd,' he whispered, 'he's hiding behind the door! Look!'")
[{'label': 'NEGATIVE', 'score': 0.9683608412742615}]
>>> sentiment("'Young men,' said Mr. Cheeryble, 'shake hands!'")
[{'label': 'POSITIVE', 'score': 0.9994064569473267}]
>>> sentiment("'I am so happy!' sobbed the little woman.")
[{'label': 'POSITIVE', 'score': 0.9998512268066406}]
>>> sentiment("""'You nasty, idle, vicious, good-for-nothing brute,' cried the woman,
... stamping on the ground, 'why don't you turn the mangle?'""")
[{'label': 'NEGATIVE', 'score': 0.9966371059417725}]



Sentiment Analysis

• A Tale of Two Cities:
>>> sentiment("""It was the best of times, it was the worst of times, it was the age of
... wisdom, it was the age of foolishness, it was the epoch of belief, it
... was the epoch of incredulity, it was the season of Light, it was the
... season of Darkness, it was the spring of hope, it was the winter of
... despair, we had everything before us, we had nothing before us, we were
... all going direct to Heaven, we were all going direct the other way--in
... short, the period was so far like the present period, that some of its
... noisiest authorities insisted on its being received, for good or for
... evil, in the superlative degree of comparison only.""")
[{'label': 'NEGATIVE', 'score': 0.9827483296394348}]



distilbert-base-uncased

• From https://huggingface.co/distilbert/distilbert-base-uncased-
finetuned-sst-2-english
• DistilBERT base uncased finetuned SST-2
• Model Description: This model is a fine-tune checkpoint 

of DistilBERT-base-uncased, fine-tuned on SST-2. This model 
reaches an accuracy of 91.3 on the dev set (for comparison, Bert 
bert-base-uncased version reaches an accuracy of 92.7).
• DistilBERT is a transformers model, smaller and faster than BERT, 

which was pretrained on the same corpus in a self-supervised 
fashion, using the BERT base model as a teacher.

https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert-base-uncased

