
LING 388: Computers and Language
Lecture 14

Today's Topics

• Homework 6 Review
• re.IGNORECASE
• regex groups:

• \n (n a number) for repeated groups

• re.finditer() and words in context
• Regex Exercises: extra credit only

Homework 6 Review

•Question 1:
• create a new corpus by lowercasing all the words in the Jane

Austen novel austen-emma.txt in nltk.corpus.gutenberg
• see previous lecture for how to access the words

• recall a corpus is just a list of words
• What is the vocabulary size before and after lowercasing?

Homework 6 Review
python
>>> import nltk
>>> words = nltk.corpus.gutenberg.words('austen-emma.txt')
>>> len(words)
192427
>>> vocab = set(words)
>>> len(vocab)
7811
>>> words2 = [word.lower() for word in words]
>>> len(words2)
192427
>>> vocab2 = set(words2)
>>> len(vocab2)
7344

Homework 6 Review

•Question 2: lowercase vocab vs. original vocab.
>>> len(vocab – vocab2)
766
>>> len(vocab2 - vocab)
299
• 766 words with at least one upper case character
• 299 lowercase words that don't exist entirely in lowercase in the

original text.

Homework 6 Review

• 766 words with at least one upper case character
• many of these are proper nouns, chapter titles, start of sentences, etc.
• {'_I_', 'Cobham', 'Kings', 'September', 'Park', '_Dixons_',
'Dixon', 'Letters', 'Ceremonies', 'Ought', 'Little',
'Proportions', 'JULY', 'Hymen', 'Worse', 'Patty', 'Under', 'They',
'CHARADE', 'Pembroke', 'Their', 'CHAPTER', … }

•Code:
>>> for x in (vocab - vocab2):
... if x.islower():
... print(x)
should be nothing (the empty set)

Homework 6 Review

• 299 lowercase words that don't exist in all lowercase in the original text.
• {'martins', 'donwell', 'cox', 'pilfering', 'iii', 'xiv',
'viii', 'hart_', 'waiving', 'english', 'west', 'cooper',
'_most_', '_rev', 'm', '_mrs', 'kindled', 'ford',
'churchills', 'june', '_there_', 'england',
'_perfection_', 'bateses', 'humph', 'randall', 'e',
'richmond', 'birmingham', 'goldsmith', 'july',
'weymouth', …}

>>> [x for x in vocab if x.lower() == 'iii']
['III']
>>> [x for x in vocab if x.lower() == 'the']
['The', 'the']

Homework 6 Review

• Set intersection:
• words that exist in lower case

>>> len(vocab & vocab2)
7045
>>> len(vocab)
7811
>>> len(vocab2)
7344

Homework 6 Review

• Exclusive or:
• either in vocab or vocab2 but not in both

>>> len([word for word in (vocab ^ vocab2) if word.islower()])
299

• same as:
>>> len(vocab2 - vocab)
299

Python regex recap
• Summary:

• \w a character [A-Za-z0-9_]
• \d [0-9]
• \b word boundary
• \s space character [\t\n\r\f\v]

• Operators:
• * zero or more repeats
• + one or more repeats
• ? zero or one repeats
• () grouping

• Raw string (avoid escaping \):
• r"\w+"

• Negation:
• \W anything not in \w
• \D anything not in \d

• Methods:
• m = re.search(pattern, string)

• return match object or None
• m = re.match(pattern, string)

• return match object or None
• l = re.findall(pattern, string)

• return list of strings/tuples
• m = re.finditer(pattern, string)

• return list of match objects or None

• Full Documentation:
https://docs.python.org/3/library/re.html

Unicode characters ok in
Python 3.x

https://docs.python.org/3/library/re.html

Tutorial

• More examples from https://docs.python.org/3/howto/regex.html

https://docs.python.org/3/howto/regex.html

Case Insensitive regex search

Extra parameter: using re.IGNORECASE
import re
string = "The the The tHe thE"
re.search(r"\bthe\b", string)
<re.Match object; span=(4, 7), match='the'>
re.findall(r"\bthe\b", string)
['the']
re.findall(r"\bthe\b", string, re.IGNORECASE)
['The', 'the', 'The', 'tHe', 'thE'] answer is a list

answer is a
match object

The trouble with re.findall()
• Only capturing groups (…) are reported …
• Repeating pattern ab: e.g. ababab…, we write the regex (ab)+
• Example:
>>> text = "ababcababababacabd"
>>> import re
>>> re.findall(r'(ab)+', text)
['ab', 'ab', 'ab']
>>> re.findall(r'((ab)+)', text)
[('abab', 'ab'), ('abababab', 'ab'), ('ab', 'ab')]

not so informative!

The trouble with re.findall()

Example:
>>> text = "ababcababababacabd"
>>> re.findall(r'((ab)+)', text)
[('abab', 'ab'), ('abababab', 'ab'), ('ab', 'ab')]
• How to only get the outermost group?
1. >>> [tuple[0] for tuple in re.findall(r'((ab)+)', text)]

['abab', 'abababab', 'ab']
2. Can also use re.finditer() here:

• returns a match object, .group(0) is outermost group, abbreviated as .group()
>>> [m.group(0) for m in re.finditer(r'((ab)+)', text)]
['abab', 'abababab', 'ab']

3. Can also specify a group as non-capturing (i.e. non-reporting) using (?: …)
>>> re.findall(r'((?:ab)+)', text)
['abab', 'abababab', 'ab']

Group number: \n

• Other useful meta-characters:
• ^ matches beginning of line
• $ matches end of line
• \n n = group number, must match identically to group

repeated the

Group number: \n

• Repeated Word Example:
• assuming you have the file looking-glass.txt in the same directory

>>> re.findall(r'\b(\w+)\W+\1\b',open('looking-glass.txt').read())
['PAWNS', 'Daisy', 'Oyster', 'Oyster', 'Daisy', 'had', 'it', 'had',
'thump', 'Faster', 'Faster', 'Now', 'Faster', 'I', 'it', 'I', 'Alice',
'long', 'oh', 'oh', 'oh', 'e', 'Feather', 'oh', 'to', 'had', 'with',
'unless', 'Ahoy', 'Ahoy', 'Alice', 'as', 'Aged', 'aged', 'no',
'Mutton', 'Alice', 'you']

• Suppose we limit ourselves to words beginning with a lowercase letter:
>> re.findall(r'\b([a-z]\w+)\W+\1\b',raw1)
['had', 'it', 'had', 'thump', 'it', 'long', 'oh', 'oh', 'oh', 'oh',
'to', 'had', 'with', 'unless', 'as', 'aged', 'no', 'you']
Suppose we want to see the repeated word in context?

Python's re module

Group number: \n

• Suppose we want to see the repeated word in context:
>>> raw = open('looking-glass.txt').read()
>>> for m in re.finditer(r'\b([a-z]\w+)\W+\1\b',raw):
... print('{}:'.format(m.group(1)),raw[m.start()-20:m.end()+20])
...

had: the _white_ kitten had had nothing to do
with
it: nothing to do
with it:—it was the black kitte

slice of raw

Group number: \n
had: Let’s

pretend.” She had had quite a long argume

thump: hear her footstep, thump, thump,

thump, along the g

it: n the other side of

it: it looked much darker

long: d been singing it a long long time!”

The other t

oh: ce

unfinished. “Oh, oh, oh!” shouted the Queen

oh: ger’s bleeding! Oh, oh, oh, oh!”

Her screams

oh: , “but I soon shall—oh, oh,

oh!”

“When do you

oh: tle shrieks of “Oh, oh,

oh!” from poor Alice,

to: his very own

mouth_—to—to—”

“To send all his

had: ly remarked.

(They had had quite enough of the

with: Hideous. I fed him

with—with—with Ham-sandwiches

unless: e

said to herself, “unless—unless we’re all part
of t

as:

out. I was as fast as—as lightning, you know

aged: to relate.

I saw an aged aged man,

 A-sitting

no: is, “is the thunder—no, no!” she hastily
corre

you: .

“We must support you, you know,” the White Qu

Python's re module
• Numbers:

• $ is a meta-character, it matches end of line. Suppose we want to match an actual dollar sign
($), we need \$.

• . is a meta-character, it's the wild-card character. If we want to match a decimal point (or
period) (.), we need \.

• ? is a meta-character for optional. \$? means the dollar sign is optional.
• Example:

• text = 'International benchmark Brent crude passed the long-anticipated
threshold of $80 per barrel on Tuesday, though it’s since slipped back down to
trade at $78.47 as of Wednesday at 10:30 a.m. in London. West Texas
Intermediate was trading at $74.73 per barrel around the same time.'

• Let's write a regex for matching the decorated numbers in text.

regex for money:
$ followed by
digits
comma (for thousands, optional)
decimal point (optional)

Regex Exercises

• Text file on course website: Oliver Twist, Charles Dickens, 1838
• imported from Project Gutenberg (https://www.gutenberg.org)
• oliver_twist.txt

• How to import it:
• first, be in the right working directory
• raw = open('oliver_twist.txt', encoding='utf-8',
errors='ignore').read()

• Check it has been imported correctly:
>>> len(raw)
893534

https://www.gutenberg.org/

Regex Exercises

1. Look for all 3 letter words ending in ly in raw using a regex.
• How many of them are there?

2. Look in raw for all words ending in ly that are 14 or more letters long.
• How many of them are there?

3. Look in raw for bigrams (here: two words adjacent to each other but
could be separated by non-word characters) that both end in ly.
• How many of them are there?

4. Look in raw for two words both beginning with a capital letter but
separated by a hyphen.
• How many of them are there?

• Hints:
• \w = word character, \W = non-word character, \b = word boundary

Regex Exercises

• Optional Homework for extra credit only
• Submit to sandiway@arizona.edu
• SUBJECT: 388 Regex Exercises YOUR NAME
• One PDF file only

• include Python terminal and any screenshots in your answer

• Deadline:
• midnight Monday 11th March

