-

8: Computers and Language """ e
Lecture14 .

. -

.-t

.

//I 440NN COUNNNSSSR——

A IIl\\\\\\\\\\\\\ms

=

Today's Topics

Homework 6 Review
re.IGNORECASE

regex groups:
* \n (n a number) for repeated groups

re.finditer() and words in context

* Regex Exercises: extra credit only

Homework 6 Review

* Question 1:

e create a new corpus by lowercasing all the words in the Jane
Austen novel austen—emma. txt in nltk.corpus.gutenberg

* see previous lecture for how to access the words
* recall a corpus is just a list of words
* What is the vocabulary size before and after lowercasing?

Homework 6 Review

python

>>> import nltk

>>> words = nltk.corpus.gutenberg.words('austen-emma.txt"')
>>> len(words)

192427

>>> vocab = set(words)

>>> len(vocab)

7811

>>> words2 = [word.lower() for word in words]
>>> len(words2)

192427

>>> vocab2 = set(words2)

>>> len(vocab2)

7344

Homework 6 Review

* Question 2: lowercase vocab vs. original vocab.

>>> len(vocab — vocab2)

766

>>> len(vocab2 - vocab)

299

e 766 words with at least one upper case character

* 299 lowercase words that don't exist entirely in lowercase in the
original text.

Homework 6 Review

e 766 words with at least one upper case character
* many of these are proper nouns, chapter titles, start of sentences, etc.

« {'_I_', 'Cobham', 'Kings', 'September', 'Park', '_Dixons_',
'Dixon', 'Letters', 'Ceremonies'{ 'Ought'{ 'Little',
'Proportions', 'JULY', 'Hymen', 'Worse', 'Patty', 'Under', 'They',
'CHARADE', 'Pembroke', 'Their', 'CHAPTER', .. }

* Code:

>>> for x in (vocab - vocab?2):
. if x.islower():

- print(x)

should be nothing (the empty set)

Homework 6 Review

* 299 lowercase words that don't exist in all lowercase in the original text.

e« {'martins', 'donwell', 'cox', 'pilfering', 'iii', 'xiv',
‘viii', 'hart_', 'waiving', ‘'english', 'west', 'cooper',
*“most ', ' rev', 'm', " mrs', 'kindled', 'ford',
‘churchills', 'june', '_there_', 'england’,
' _perfection_', 'bateses', 'humph', 'randall', 'e',
‘richmond', 'birmingham', ‘goldsmith', 'july’,
'weymouth', ..}

>>> [x for x in vocab if x.lower() == 'iii'l
['III']
>>> [x for x in vocab if x.lower() == 'the']

['The', 'the']

Homework 6 Review

e Setintersection:
* words that exist in lower case
>>> len(vocab & vocab2)
7045
>>> len(vocab)
7811
>>> len(vocab2)
7344

Homework 6 Review

e Exclusive or:
e eitherin vocab orvocab2 but notin both

>>> len([word for word in (vocab ~ vocab2) if word.islower()])
299

¢ same as.
>>> len(vocab2 - vocab)
299

Python regex recap

Unicode characters ok in

. Python 3.x

e Summary:

* \w a character [A-Zd-z0-9_]

* \d [0-9]

* \b word boundary

* \s space character [\t\n\r\f\v]
e Operators:

« * Zero or more repeats

° + one or more repeats

« ? zero or one repeats

() grouping
* Raw string (avoid escaping\):

* r'"\w+"

* Negation:
* \W anything not in \w
* \D anything notin \d
* Methods:

e m = re.search(pattern, string)
* return match object or None

«m = re.match(pattern, string)
* return match object or None

« 1 = re.findall(pattern, string)
* return list of strings/tuples

«m = re.finditer(pattern, string)
* return list of match objects or None

e Full Documentation:
https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

Tutorial

* More examples from https://docs.python.org/3/howto/regex.html

Table Of Contents

Regular Expression HOWTO
= Introduction

= Simple Patterns
= Matching
Characters
= Repeating Things

= Using Regular
Expressions
= Compiling Regular
Expressions
= The Backslash
Plague

TTGOTT

Regular Expression HOWTO

Author: A.M. Kuchling <amk@amk.ca>

Abstract

This document is an introductory tutorial to using regular expressions in Python
with the re module. It provides a gentler introduction than the corresponding

section in the Library Reference.

https://docs.python.org/3/howto/regex.html

Case Insensitive regex search

Extra parameter: using re.IGNORECASE
import re
string = "The the The tHe thE"

re.search(r'"\bthe\b", string)]

dnNSWer IS a
<re.Match object; span=(4, 7), match='the'>
re.findall(r"\bthe\b", string)

['"the']

re.findall(r"\bthe\b", string, re.IGNORECASE)
[IThel’ Ithel, IThel, ItHel, |.thE|] answer is a list

The trouble with re. findall()

* Only capturing groups (...) are reported ...

» Repeating pattern ab: e.g. ababab..., we write the regex (ab) +
 Example:

>>> text = "ababcababababacabd"

>>> import re

>>> re.findall(r'(ab)+', text)
>>> re,findall(r'((ab)+)"', text)
[('abab', 'ab'), ('abababab', 'ab'), ('ab', 'ab')]l

re. £indall(pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is
scanned left-to-right, and matches are returned in the order found. If one or more groups
are present in the pattern, return a list of groups; this will be a list of tuples if the pattern
has more than one group. Empty matches are included in the result.

The trouble with re. findall()

Example:

>>> text = "ababcababababacabd"

>>> re.findall(r'((ab)+)"', text)

[('abab', 'ab'), ('abababab', 'ab'), ('ab', 'ab')]
* How to only get the outermost group?

1. >>> [tuple[@] for tuple in re.findall(r'((ab)+)"', text)]
['abab', 'abababab', 'ab']
2. Canalsouse re.finditer() here:
* returns a match object, .group(0) is outermost group, abbreviated as .group()

>>> [m.group(@) for m in re.finditer(r'((ab)+)"', text)]
['abab', 'abababab', 'ab']

3. Can also specify a group as non-capturing (i.e. non-reporting) using (?: ..

>>> re.findall(r'((?:ab)+)"', text)
['abab', 'abababab', 'ab']

Group number: \n

e Other useful meta-characters:

o matches beginning of line
e $ matches end of line
*\n n = group number, must match identically to group

>>> p = re.compile(r'\b(\w+)\s+\1\b")
>>> p.search('Paris in the the spring').group()
'the the'

repeated the

Group number: \n

* Repeated Word Example:

* assuming you have the file looking-glass.txt in the same directory
>>> re.findall(r'\b(\w+)\W+\1\b',open('looking—glass.txt').read())
['PAWNS', 'Daisy', 'Oyster', 'Oyster', 'Daisy'{ "had', 'it'{ "had',
"thump', 'Faster', 'Faster', 'Now', 'Faster', 'I', 'it', 'I', 'Alice',
‘long', 'oh', 'oh', 'oh', 'e', 'Feather', 'oh', 'to', 'had', 'with',
‘unless', 'Ahoy', 'Ahoy', 'Alice', 'as', 'Aged', 'aged', 'no',
'Mutton', 'Alice', 'you']
» Suppose we limit ourselves to words beginning with a lowercase letter:
>> re.findall(r'\b([a-z]\w+)\W+\1\b', rawl)
['had', 'it', 'had', 'thump', 'it', 'long', 'oh', 'oh', 'oh', 'oh',
'to', 'had', 'with', 'unless', ‘'as', 'aged', 'no', 'you'l
Suppose we want to see the repeated word in context?

Python's re module

Method/Attribute Purpose

match() Determine if the RE matches at the beginning of the string.

search() Scan through a string, looking for any location where this RE matches.
findall() Find all substrings where the RE matches, and returns them as a list.

finditer() Find all substrings where the RE matches, and returns them as an
iterator.

Group number: \n

* Suppose we want to see the repeated word in context:

>>> raw = open('looking-glass.txt').read()

>>> for m in re.finditer(r'\b([a-z]\w+)\W+\1\b', raw):
print('{}:"'.format(m.group(1)),rawlm.start()-20:m.end()+20])

had: the _white_ kitten had had nothing to do
with

it: nothing to do

with it:—it was the black kitte

Group number: \n

had: Let's

pretend.” She had had quite a long argume
thump: hear her footstep, thump, thump,
thump, along the g

it: n the other side of

it: it looked much darker

long: d been singing it a long long time!”

The other t
oh: ce
unfinished. “0Oh, oh, oh!” shouted the Queen

oh: ger'’s bleeding! 0Oh, oh, oh, oh!”

Her screams

oh: , “but I soon shall-oh, oh,

oh!”

“When do you

oh: tle shrieks of “Oh, oh,
oh!” from poor Alice,

to: his very own

mouth_—to—to-"

“To send all his

had: 1y remarked.

(They had had quite enough of the
with: Hideous. I fed him
with—with—with Ham-sandwiches

unless: e

said to herself, “unless—unless we’'re all part
of t

as:
out. I was as fast as—as lightning, you know
aged: to relate.
I saw an aged aged man,

A-sitting

no: is, “is the thunder—no, no!” she hastily
corre

you:

“We must support you, you know,” the White Qu

Python's re module

* Numbers:

* $is a meta-character, it matches end of line. Suppose we want to match an actual dollar sign

($), we need \$.

* .is a meta-character, it's the wild-card character. If we want to match a decimal point (or

period) (.), we need \.

* ?is a meta-character for optional. \$? means the dollar sign is optional.

* Example:

 text
threshold of

@ per barrel on

trade at $78.47 as of Wednesday

'International benchmark_Brent crude passed the long—anticipated

Tuesday ack down to

h it’s since Slipped
at 10:

thoug
30 a.m. in London. West Texas

Intermediate was trading at $74.73 per barrel around the same time.'
* Let's write a regex for matching the decorated numbers in text.

regex for money:
$ followed by
digits
comma (for thousands, optional)
decimal point (optional)

>>> text3 = "$1,000,000.00 at No. 34"
>>> re.findall(r'\$[\d, 1+', text3)
['$1,000,000']

>>> text3 = "$1,000,000.05 at No. 34"
>>> re.findall(r'\$[\d,\.1+', text3)
['$1,000,000.05']

>>>

Regex Exercises

* Text file on course website: Oliver Twist, Charles Dickens, 1838

* imported from Project Gutenberg (https://www.gutenberg.org)
« oliver_twist.txt

* How to import it:

* first, be in the right working directory

 raw = open('oliver_twist.txt', encoding='utf-8',
errors="'ignore').read()

* Check it has been imported correctly:

>>> len(raw)
893534

https://www.gutenberg.org/

Regex Exercises

1. Look for all 3 letter words ending in ly in raw using a regex.
* How many of them are there?

2. Lookin raw for all words endingin ly that are 14 or more letters long.
* How many of them are there?

3. Lookin raw for bigrams (here: two words adjacent to each other but
could be separated by non-word characters) that both end in ly.
* How many of them are there?

4. Lookin raw for two words both beginning with a capital letter but

separated by a hyphen.
* How many of them are there?

e Hints:
* \w =word character, \W = non-word character, \b = word boundary

Regex Exercises

* Optional Homework for extra credit only
 Submit to sandiway@arizona.edu
« SUBJECT: 388 Regex Exercises YOUR NAME

* One PDF file only
* include Python terminal and any screenshots in your answer

* Deadline:
* midnight Monday 11" March

