‘8' Cor’nput'ers and Lahguagé

5 Lecture 13 ,

Administrivia

* I'll be away next week (and the following week)
* Week after next is Spring Break anyway

* Lecture 14 will be pre-recorded and posted on the course website
* there will be some regex exercises
* optional: for extra credit only

Today's Topics

 Recall those string methods (from last time)?
- word.startswith(string) prefix

« word.endswith(string) suffix
e word.istitle() titlecase

* More complex patterns:

* regular expressions (regex)
* A class exercise

* Homework 6

Python's re module

* Regular Expressions in Python:

* a pattern matching language (used by many other programming languages)
* the re module is written in C (an efficient programming language)

* we write the pattern using a string, a raw string.
 https://docs.python.org/3/howto/regex.html

\ is a meta-characterinre
\\ means a backslash character

Z

to match a literal backslash, one has to Regular String
write "\\\\' as the RE string, because the regular "ab*"

. / a
expression must be \\, and each backslash O .
must be expressed as \\ inside a regular Python / hpection
string literal. "\\w+\\s+\\1"

Raw sy/
r"ab*’
r'@ection "
r'@\s+\1 "

But, there's a big

\

b[u d h \w means an alphanumeric characterinre
PleliEil, CElE e \s means a whitespace characterinre

Backslash Plague \1 means a reference to group 1

https://docs.python.org/3/howto/regex.html

Python's re module

* One way (hot the easiest way) is to compile a regex
* Then use the compiled pattern p using p.match()

>>> import re

>>> p = re.compile('ab*")
>>> p

re.compile('ab*"')

>>> p = re.compile('ab*', re.IGNORECASE)

option: ignore upper vs. lower case

>>> import re
>>»> p = re.compile('[a-z]+")
>>> p

>>> p.match("")

>>> print(p.match(""))
None

re.compile('[a-z]+") | recommend always prefixing the regex pattern string with r

>>> m = p.match('tempo')
>>> m

<re.Match object; span=(0, 5), match='tempo'>

Please Read!

* More examples from https://docs.python.org/3/howto/regex.html

l TTSoT1
Table Of Contents :
Regular Expression HOWTO
Regular Expression HOWTO
= Introduction
= Simple Patterns Author: A.M. Kuchling <amk@amk.ca>
= Matching
Characters Abstract
= Repeating Things
. g;g‘rzs':?g:s'ar This document is an introductory tutorial to using regular expressions in Python
= Compiling Regular with the re module. It provides a gentler introduction than the corresponding
Expressions section in the Library Reference.
= The Backslash
Plague

https://docs.python.org/3/howto/regex.html

Python regex

Unicode characters ok in

Python 3.x
e Summary: * Negation: (uses capitalized version
e \w a character [A-Z&-z0-9] of the lowercase meta-characters)
* \d [0-9] * \W anything notin \w
*\b word boundary * \D anything notin\d
* \s space character
[\mnAv] * Full Documentation:
* Operators: https://docs.python.org/3/library/re.htm
o« ¥ zero or more repeats L
° + one or more repeats

() grouping
* Raw string prefix (avoid needing to
escape backslash \):
° rII\W+II

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Python's re module

The sequence

prog = re.compile(pattern)
result = prog.match(string)

is equivalent to

Python has two ways to use regexs:
* this can be very confusing for a beginner
Method 1:

* explicitly compile a regex,

* thencall regex.match(string)

* disadvantage: two statements needed

result = re.match(pattern, string) Method 2(simpler):

- re.match(regex, string)

>>> text = "He was carefully disguised but captured quickly by police."

>>> re.findall(r"\w+ly", text)
['carefully', 'quickly']

-ly adverbs

Python's re module

- re.findall(regex, string)

* Example:
« import re
« text = "Quickly or slowly we go to Alyssa's house"

e re.findall(r'"\w+ly", text)
* Do you see what's strange about the result?

Python's re module

* re.findall(regex, string)

* Example:
« import re
« text = "Quickly or slowly we go to Alyssa's house"

e re.findall(r"\w+1ly\b", text)
* \b means word boundary.
* Canyou see the difference in the result?

Python's re module

Method/Attribute Purpose

match () Determine if the RE matches at the beginning of the string.

search() Scan through a string, looking for any location where this RE matches.

findall() Find all substrings where the RE matches, and returns them as a list.

finditer() Find all substrings where the RE matches, and returns them as an
iterator.

>>> import re >>> m = p.match('tempo’)

>>> p = re.compile('[a-z]+") >>> m

>>> p < sre.SRE Match object; span=(0, 5), match='tempo'>

re.compile('[a-z]+") ,L

components using

methods on the match

Python's re module

* Another potentially confusing part of the regex implementation is
the result of re.match(regex, string)

* If there is no match, None is returned.
* If there is a match, a match object is returned.

* Can use this in a condition, e.g.:

if re.match(regex, string):
print("Matched!")

else:
print("Sorry, no match!")

Python's re module

Method/Attribute Purpose

group() Return the string matched by the RE
start() Return the starting position of the match
end () Return the ending position of the match
span()

Return a tuple containing the (start, end) positions of the match

>>> m = p.match('tempo’)
>>> m

< _sre.SRE Match object; span=(0, 5), match='tempo'>

>>> m.group()

'tempo’

>>> m.start(), m.end()
(0, 3)

>>> m.span()

(0, 5)

Python's re module

* Grouping (using round brackets) can be very useful

 Example (from a few slides back):
import re
text = "Quickly or slowly we go to Alyssa's house"
re.findall(r"\w+1ly\b", text)
['Quickly', 'slowly']
* But what if we didn't want the 'ly' suffix?

e Solution:
re.findall(r" (\w+) ly\b", text)
['Quick', 'slow']

Python's re module

* Grouping (using round brackets) can be very useful
* What if there is more than one group in the regex?

* Example:
« text = "Quickly or slowly we go to Alyssa's house"
« re.findall(r" (\w+) (ly)\b", text)
« [('Quick', 'ly'), ('slow', 'ly')]
* Answer:
* it returns them as tuples

Class Exercise

* Looking Glass again:

« raw = open('looking—glass.txt', encoding='utf-8',
errors="'ignore').read()

e -ly search:

* how many words end in —ly and what is the frequency distribution?
1. len(re.findall(r"\b\w+1ly\b", raw))

2. len(set(re.findall(r"\b\w+1ly\b", raw)))

3. nltk.FregDist(re.findall(r"\b\w+1ly\b", raw))

Python's re module

>>> p = re.compile(r'\d+")

>>> p.findall('l2 drummers drumming, 11 pipers piping,

[‘12', '11', '10']

10 lords a-leaping')

>>> iterator = p.finditer('1l2 drummers drumming,
>>> jterator

<callable_ iterator object at 0x...>

>>> for match in iterator:
print(match.span())

(0, 2)

(22, 24)

(29, 31)

11 ...

10 ...

Python's re module

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):

- - print('£02d-%02d: %s' % (m.start(), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

re.sub()

Recall .split() (by space) vs. nltk.word_tokenize()?
* String:

pl = 'Alice was beglnnlng to get very tired of sitting by her sister
on the bank, and having h1n t0 do. Once or tw1ce She had peeped
into the book her sister was read 1n , but it had pictures or

conversatlons in it, "and what 1is t e use of a book

thought Alice,
"without pictures or conversations?

re.&b(pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in
string by the replacement repl. If the pattern isn’t found, string is returned unchanged. rep/ can be
a string or a function; if it is a string, any backslash escapes in it are processed. That is, \n is con-

* COdei . replace any punctuation
pZ = pl.split() symbol here by "" (empty
import re string), i.e. delete it

for word in p2:
print(re.sub(r" [?\"",.]1", "", word))

Homework 6

* Question 1:

* create a new corpus by lowercasing all the words in the Jane
Austen novel austen—-emma. txt in nltk.corpus.gutenberg
* see previous lecture for how to access the words

* recall a corpus is justa list of words

* you can use a list comprehension and .lower() to create a
new list of words and assign the result to a variable.

* What is the vocabulary size before and after lowercasing?

Homework 6

 Question 2: consider sets

>>> a = set('abracadabra') # form a set from a string

* Python has some set operations, e.g. — (difference), | (union), &
(intersection) and * (union but excluding the ones in common).

>>> b = set('alacazam') # form a second set

>>> a - b # letters in a but not in b
set(['x', 'd', 'b'])

>>> a | b # letters in either a or b
set(['a', '¢', 'Xx', 'd', 'b', 'm', 'z', '1'])

>>> a & b # letters in both a and b
set(['a', 'c'])

>> a “ b # letters in a or b but not both
set(['x', 'd', 'b', 'm', 'z', '1'])

Homework 6

* Question 2:

* Python set operation: — (difference)
 Suppose vVocab (original) and Lcvocab (/c = lowercase) are our sets.
* Compute the size of

« vocab — lcvocaband
« Llcvocab — vocab.

* Explain the two different set difference operations, i.e. what they
compute for vocabulary, why they do different things and give
different results.

* Can you give example(s) to illustrate your answer?

Homework 6

https://docs.python.org/3/library/stdtypes.html#str.islower

str.islower()
Return True if all cased characters [4] in the string are lowercase and there is at least one cased

character, False otherwise.

str.isnumeric()
Return True if all characters in the string are numeric characters, and there is at least one charac-
ter, False otherwise. Numeric characters include digit characters, and all characters that have the
Unicode numeric value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric
characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Nu-
meric_Type=Numeric.

str.isprintable()
Return True if all characters in the string are printable or the string is empty, False otherwise.
Nonprintable characters are those characters defined in the Unicode character database as “Other”
or “Separator”, excepting the ASCII space (0x20) which is considered printable. (Note that printable
characters in this context are those which should not be escaped when repr () is invoked on a
string. It has no bearing on the handling of strings written to sys.stdout or sys.stderr.)

https://docs.python.org/3/library/stdtypes.html

Homework 6

 Submit to sandiway@arizona.edu
« SUBJECT: 388 Homework 6 YOUR NAME

* One PDF file only
* include Python terminal and any screenshots in your answer

 Deadline:
* midnight Monday

