
LING 388: Computers and Language
Lecture 13

Administrivia

• I'll be away next week (and the following week)
• Week after next is Spring Break anyway
• Lecture 14 will be pre-recorded and posted on the course website
• there will be some regex exercises
• optional: for extra credit only

Today's Topics

• Recall those string methods (from last time)?
• word.startswith(string) prefix
• word.endswith(string) suffix
• word.istitle() titlecase

•More complex patterns:
• regular expressions (regex)
• A class exercise

• Homework 6

Python's re module

• Regular Expressions in Python:
• a pattern matching language (used by many other programming languages)
• the re module is written in C (an efficient programming language)
• we write the pattern using a string, a raw string.

• https://docs.python.org/3/howto/regex.html
\ is a meta-character in re
\\ means a backslash character

to match a literal backslash, one has to
write '\\\\' as the RE string, because the regular
expression must be \\, and each backslash
must be expressed as \\ inside a regular Python
string literal.

\w means an alphanumeric character in re
\s means a whitespace character in re
\1 means a reference to group 1

But, there's a big
problem, called the
Backslash Plague

https://docs.python.org/3/howto/regex.html

Python's re module

• One way (not the easiest way) is to compile a regex
• Then use the compiled pattern p using p.match()

option: ignore upper vs. lower case

I recommend always prefixing the regex pattern string with r

Please Read!

• More examples from https://docs.python.org/3/howto/regex.html

https://docs.python.org/3/howto/regex.html

Python regex

• Summary:
• \w a character [A-Za-z0-9_]
• \d [0-9]
• \b word boundary
• \s space character

[\t\n\r\f\v]
• Operators:

• * zero or more repeats
• + one or more repeats
• () grouping

• Raw string prefix (avoid needing to
escape backslash \):
• r"\w+"

• Negation: (uses capitalized version
of the lowercase meta-characters)
• \W anything not in \w
• \D anything not in \d

• Full Documentation:
https://docs.python.org/3/library/re.htm
l

Unicode characters ok in
Python 3.x

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Python's re module

Python has two ways to use regexs:
• this can be very confusing for a beginner
Method 1:
• explicitly compile a regex,
• then call regex.match(string)
• disadvantage: two statements needed
Method 2 (simpler):
• re.match(regex, string)

-ly adverbs

Python's re module

• re.findall(regex, string)
• Example:
• import re
• text = "Quickly or slowly we go to Alyssa's house"
• re.findall(r"\w+ly", text)

• Do you see what's strange about the result?

Python's re module

• re.findall(regex, string)
• Example:
• import re
• text = "Quickly or slowly we go to Alyssa's house"
• re.findall(r"\w+ly\b",text)

• \b means word boundary.
• Can you see the difference in the result?

Python's re module

can access this
components using

methods on the match
object

Python's re module

• Another potentially confusing part of the regex implementation is
the result of re.match(regex, string)
• If there is no match, None is returned.
• If there is a match, a match object is returned.

• Can use this in a condition, e.g.:
if re.match(regex, string):

print("Matched!")
else:

print("Sorry, no match!")

Python's re module

Python's re module

• Grouping (using round brackets) can be very useful
• Example (from a few slides back):

 import re
text = "Quickly or slowly we go to Alyssa's house"
re.findall(r"\w+ly\b",text)
['Quickly', 'slowly']

• But what if we didn't want the 'ly' suffix?
• Solution:

re.findall(r"(\w+)ly\b",text)
['Quick', 'slow']

Python's re module

• Grouping (using round brackets) can be very useful
•What if there is more than one group in the regex?
• Example:
• text = "Quickly or slowly we go to Alyssa's house"
• re.findall(r"(\w+)(ly)\b",text)
• [('Quick', 'ly'), ('slow', 'ly')]

• Answer:
• it returns them as tuples

Class Exercise

• Looking Glass again:
• raw = open('looking-glass.txt', encoding='utf-8',
errors='ignore').read()

• -ly search:
• how many words end in –ly and what is the frequency distribution?
1. len(re.findall(r"\b\w+ly\b", raw))
2. len(set(re.findall(r"\b\w+ly\b", raw)))
3. nltk.FreqDist(re.findall(r"\b\w+ly\b", raw))

Python's re module

Python's re module

re.sub()

Recall .split() (by space) vs. nltk.word_tokenize()?
• String:
p1 = 'Alice was beginning to get very tired of sitting by her sister
on the bank, and of having nothing to do. Once or twice she had peeped
into the book her sister was reading, but it had no pictures or
conversations in it, "and what is the use of a book," thought Alice,
"without pictures or conversations?"'

• Code:
p2 = p1.split()
import re
for word in p2:
 print(re.sub(r"[?\"',.]", "", word))

replace any punctuation
symbol here by "" (empty

string), i.e. delete it

Homework 6

• Question 1:
• create a new corpus by lowercasing all the words in the Jane

Austen novel austen-emma.txt in nltk.corpus.gutenberg
• see previous lecture for how to access the words

• recall a corpus is just a list of words
• you can use a list comprehension and .lower() to create a

new list of words and assign the result to a variable.
• What is the vocabulary size before and after lowercasing?

Homework 6

• Question 2: consider sets

• Python has some set operations, e.g. – (difference), | (union), &
(intersection) and ^ (union but excluding the ones in common).

Homework 6

• Question 2:
• Python set operation: – (difference)
• Suppose vocab (original) and lcvocab (lc = lowercase) are our sets.
• Compute the size of
• vocab – lcvocab and
• lcvocab – vocab.

• Explain the two different set difference operations, i.e. what they
compute for vocabulary, why they do different things and give
different results.
• Can you give example(s) to illustrate your answer?

Homework 6

https://docs.python.org/3/library/stdtypes.html#str.islower

str.lower()

https://docs.python.org/3/library/stdtypes.html

Homework 6

• Submit to sandiway@arizona.edu
• SUBJECT: 388 Homework 6 YOUR NAME
• One PDF file only
• include Python terminal and any screenshots in your answer

• Deadline:
• midnight Monday

