LING 364: Introduction to Formal Semantics

Lecture 9
February 9th

Administrivia

- Reminder
- Homework 2 due next Tuesday
- need help getting started?

Administrivia

- today
- (3:30pm - 4:40pm)
- lecture here in Comm 214
- (4:45pm - 5:45pm) (EXTRA)
- lab practice in Social Sciences Lab 224
- we'll begin doing the homework exercises in the lab

Today's Topics

- Grammar Rule Recursion
- Prolog behavior
- Handout (from Tuesday)
- Chapter 3: More about Predicates
- Short Quiz \#3 on Thursday

Grammar Rule Recursion

- Recursion:
- A phrase may contain embedded inside another instance of the same phrase
- Example:
- sentence with a relative clause
- [sbar [S I saw [NP the man [sbar who [s attacked me][]]]]
- [sbar [s I saw [NP the man [sbar who [s attacked [NP the dog [sbar who [s attacked me $]$] $]$] $]$] $]$]

Grammar Rule Recursion

- Example:
- assuming NP (not DP analysis) for simplicity...
- [${ }_{\mathrm{NP}}$ [NP John] 's mother]
- [${ }_{N P}$ [NP [NP John]'s mother]'s cat]
- DCG rules:
-np --> np, [$\left.{ }^{\prime}{ }^{\prime}{ }^{\prime}\right]$], n.

$$
\cdots '=~ ' S
$$

-n --> [mother].
-n --> [cat].
-np --> [john].

Grammar Rule Recursion

- Prolog Computation Rule:
- select "first" matching grammar rule each time we call a non-terminal
- "first" = first line that matches
- DCG rules:

$$
\begin{aligned}
& -n p-->\text { np, [’'s'], n. } \\
& -n-->\text { [mother]. } \\
& -n-->[\text { cat }] . \\
& - \text { np --> [john]. } \\
& \text { - Leads to infinite loop here... }
\end{aligned}
$$

Grammar Rule Recursion

- General Rule for writing recursive rules:
- put recursive case last
- i.e. place non-recursive rules for a non-terminal ahead of the recursive ones
- DCG rules:

$$
\begin{aligned}
& \text {-np --> [john]. } \\
& \text { - np --> np, ['`s'], n. } \\
& \text {-n --> [mother]. } \\
& \text { - n --> [cat]. } \\
& \text { - no looping here... }
\end{aligned}
$$

Granṇ̂ar Ruie Recursion

- You'll need it for homework 2...
- Examples:

- Consider a possible NP rule for conjoining two NPs:
- np --> np, conj, np.
- conj --> [and].

More about Predicates

- 3.1 Other Types of Predicates: Adjectives, Predicate Nominals
- (1) Shelby is small
- (2) Shelby is a dog
- Semantics of is and a.
- Possibilities:
- Meaningless
- Non-interfering meaning - trivial meaning

More about Predicates

- 3.1 Other Types of Predicates: Adjectives, Predicate Nominals
- (1) Shelby is small
- (2) Shelby is a dog
- Semantics of (indefinite determiner) a.
- (3) a dog bit me
- (4) the/one/every dog bit me
- quantifier?

More about Predicates

- Semantics of (indefinite determiner) a.
- (3) a dog bit me
- (4) the/one/every dog bit me
- quantifier?
- (3') there exists a dog x such that bit($(x, m e)$
- (4') every: for each dog x, bit(x,me)

More about Predicates

- Semantics of (indefinite determiner) a.
- (3) a dog bit me
- (3') there exists a dog x such that $\operatorname{bit}(x, \mathrm{me})$
- (2) Shelby is a dog
- semantics involving "there exist a dog x "

More about Predicates

- Semantics of (indefinite determiner) a.
- (3) a dog bit me
- (3') there exists a dog x such that $\operatorname{bit}(x$, me $)$
- (2) Shelby is a dog
- semantics involving "there exist a dog x "
- No...

More about Predicates

- 3.2 Transitive Verbs
- (5) Shelby saw Hannibal
- 3.3 Relative Clauses
- (7) Hannibal is [who Shelby saw]
- semantics of [who Shelby saw]

More about Predicates

- 3.3 Relative Clauses
- (7) Hannibal is [who Shelby saw]
- semantics of [who Shelby saw]
- Shelby saw who
- (with logic variable)
saw(shelby,who).
saw(shelby,X).

More about Predicates

- 3.4 Topicalization
- (9) Shelby, Mary saw
- Semantics?
- Paraphrase (9) as:
$-(10)$ Shelby is who ${ }_{1}$ Mary saw e_{1}

More about Predicates

- 3.5 Sub-atomic Semantics
- Event semantics
- (11) Sylvia petted Shelby
- introduce an event variable, call it e
- Prolog-style, we can say:
- event(e), agent(e,sylvia), patient(e,shelby).
- Notions like:
- agent, patient, instrument etc.
are called thematic roles

More about Predicates

- lambda calculus:
- easy to introduce now...
- Example:
- barks: $\lambda x . x$ barks barks(X).
- Shelby barks
- [λx x.x barks](Shelby)
- barks(X), X = shelby
- Generalization:
- [גx.[גy.y saw x]

Quiz 3

- (3pts)
- Give lambda calculus semantics for:
- likes
- likes Mary
- John likes Mary

