LING 364: Introduction to
Formal Semantics

Lecture 7
February 2nd

Administrivia

» today
—(3:30pm — 4:40pm)
* lecture here in Comm 214
— (4:45pm — 5:45pm) (EXTRA)

* lab practice in Social Sciences Lab 224

 also next week...
— see schedule in Lecture 6 slides

Last Time

« Compositionality: meaning of a sentence is composed from
the meaning of its subparts

« example:

— given “John likes Mary” corresponds to likes(john,mary).

— meaning fragments are likes(john,mary)
« word or phrase meaning o~
« John john john likes(X,mary)
* likes Mary likes(X,mary). | T~
* likes likes(X,Y). John likes(X,Y) mary
* Mary mary | l

likes Mary

each word here has a contribution to make to the meaning of the

complete sentence
cf. it is raining

(pleonastic “it"/ambient “it”)

Last Time

 Language violates compositionality in the case of idioms

« example: sentence
— John kicked the bucket np/\vp
— literal meaning: | o~
* word meaning John v np
* john john \ I
e kick kick(X,Y). kicked the bucket
* bucket bucket ’ Kick +the bucket = Jie

— idiomatic meaning:

-« word meaning _ W
* john john |
+ kick <None> ,/j

bucket <None> humanities.byu.edu/.../ kick_the_bucket.html
kick the bucket die(X). cf. “kick a bucket”

Today

* |ook in some detail at what we started last time...

Basic DCG:

sentence --> np, vp.

vp --> v, np.

v ——> [likes].
np --> [john].
np --> [mary].

Query: (we supply two arguments:
sentence as a list and an empty list) oo (1 ikes)

?- sentence([john,likes,mary],

Yes (Answer)

 Phrase Structure DCG:

vp (vp (V,NP)) --> v(V), np(NP).

i))y ——> [likes].
np (np (john)) --> [john].
np (np (mary)) --> [mary].

* Query: (supply one more argument)

?- sentence (PS, [Jjohn,likes,mary],

sentence (sentence (NP,VP)) --> np(NP), vp(

[1).

VP) .

PS = sentence(np(john),vp(v(likes),np(mary)))

How to turn a basic DCG into one that “returns” more than Yes/No

Today

* |ook in some detail at what we started last time...

Basic DCG:

sentence --> np, vp.
vp --> v, np.
v ——> [likes].
np --> [john].
np --> [mary].

Query: (we supply two arguments:
sentence as a list and an empty list)

?—- sentence ([john, likes,mary], []) .
Yes (Answer)

How to turn a basic DCG
into one that “returns” the
meaning of a sentence

Meaning DCG:
- sentence(P) --> np(NP1l), vp(P),
{saturatel (P,NP1) }.

- vp(P) -=> v (P), np
- v(likes(X,Y)) -->
-——>
- np(mary) -->
- saturatel (P, A)
- saturate2 (P, A)

NP2),
likes].
[John].

(
[
- np(john)
[mary] .

:- arg(l,P,A).
:- arg(2,P,A).

Query: (supply one more argument)
?- sentence (M, [john, likes,mary], []) .

M = likes(john,mary)

{saturate2 (P,NP2) }.

Part 1

« Computing Phrase Structure

Representing Phrase Structure in Prolog

 We don’t directly draw trees in Prolog, but we can use an “equivalent”
representation

 example:
sentence(np(john),vp(v(likes),np(mary)))

sentence]
T~ Notation:
np vp Prolog Tree Prolog Tree
| P john john v(likes) Vv
John v np ALty mary l
likes likes .
\ \ likes
likes Mary np (john) np vp(v(likes) ,np(mary))
| vp
v np
np(mary) np l l
l likes Ma
Mary Y

Basic DCG:

sentence --> np, vp.
vp --> v, np.
v ——> [likes].
np --> [john].
np --> [mary].

Procedure:
— for each DCG rule, add
one argument that

encodes the equivalent
tree fragment

DCG rules:

np --> [john].
np --> [mary].

add one argument:

np() --> [john].
np() —--> [mary].

substitute tree fragment:

np (np (john)) --> [john].
np (np (mary)) --> [mary].

Modify DCG to include Phrase Structure

sentence(np(john),vp(v(likes),np(mary)))

sentence
/\
np vp
, /\
John Vv np
likes Mary
Prolog Tree Prolog Tree
john john v(likes) Vv
mary mary l
likes likes .
likes

np(john) np

|

John
np(mary) np

|

Mary

vp(v(likes) ,np(mary))

vp
T~

v np

| |

likes Mary

Basic DCG:

sentence --> np, vp.
vp --> v, np.
v ——> [likes].
np --> [john].
np --> [mary].

Procedure:

— for each DCG rule, add
one argument that
encodes the equivalent
tree fragment

DCG rule:

v ——> [likes].

add one argument:

v() —-——> [likes].

substitute tree fragment:

v(v(likes)) —--> [likes].

Modify DCG to include Phrase Structure

sentence(np(john),vp(v(likes),np(mary)))

sentence
/\
np vp
, /\
John Vv np
likes Mary
Prolog Tree Prolog Tree
john john v(likes) Vv
mary mary l
likes likes .
likes

np(john) np

|

John
np(mary) np

|

Mary

vp(v(likes) ,np(mary))

vp
T~

v np

| |

likes Mary

DCG rule:

vp --> v, np.

add one argument:

vp ()
what goes in there?

well, we already have
transformed v and np to take
one argument:

--> v, np.

v(v(likes)) --> [likes].
np (np (john)) --> [john].
np (np (mary)) --> [mary].

so we have:

O YL g (0.

can’t just write|vp (v (likes) , np (mary))
Y could be np (john), could be np (mary)
we could also (in principle) have other verbs:
e.g. v(v (hates)) --> [hates].

finally:

vp (vp (X, Y))

-=> v(X), np(Y).

Modify DCG to include Phrase Structure

sentence(np(john),vp(v(likes),np(mary)))

sentence
/\
np vp
, /\
John Vv np
likes Mary
Prolog Tree Prolog Tree
john john v(likes) Vv
mary mary l
likes likes .
likes
np (john) np vp(v(likes),np(mary))
| vp
np(mary) np \l/ nlp
l likes Ma
Mary i

Modify DCG to include Phrase Structure

sentence(np(john),vp(v(likes),np(mary)))

DCG rule:

sentence --> np, Vp.

add one argument:

sentence ()
what goes in there?

well, we already have

--> np, Vp.

transformed vp and np to

take one argument:

vp(vp (X,Y)) —-=-> v(X), np(Y).
np (np (john)) --> [john].
np (np (mary)) --> [mary].
so we have:

sentence() —--> np(X),vp(Y).
finally:

sentence (sentence (X,Y)) —-—->

np (X), vp(Y).

sentence
/\
np vp
, /\
John Vv np
likes Mary
Prolog Tree Prolog Tree
john john v(likes) Vv
mary mary l
likes likes .
likes
np (john) np vp(v(likes),np(mary))
| vp
np(mary) np \l/ nlp
l likes Mary

Mary

Modify DCG to include Phrase Structure

« modification to include one extra argument for each DCG rule is now

complete

Basic DCG:

sentence --> np, vp.
vp --> v, np.

v ——> [likes].

np --> [john].

np -->

Query: (we supply two arguments:
sentence as a list and an empty list)

?—- sentence ([john, likes,mary], []) .
Yes (Answer)

[mary] .

Phrase Structure DCG:

sentence (sentence (NP,VP)) --> np(NP), vp(VP).

vp (vp (V,NP)) --> v(V), np(NP).
v(v(likes)) --> [likes].
np (np (john)) --> [john].
np (np (mary)) --> [mary].

Modified Query: (supply one more argument)

?- sentence (PS, [john,likes,mary], []) .
PS = sentence(np(john),vp(v(likes),np(mary)))

Part 2

« Computing Meaning

Representing Meaning in Prolog

« We don’t need to represent trees here, but we still need to know the
equivalences ...

« example:

John likes Mary

likes(john,mary)

likes(john,mary)

/\
john likes(X,mary)
, T~
John likes(X)Y) mary
likes Mary

Equivalences:

Meaning Word/Phrase
john John

mary Mary
likes(X,Y) likes
likes(X,mary) likes Mary
likes (X, john) likes John

likes(john,mary) John likes Mary

Modify DCG to include Meaning

Basic DCG:

sentence --> np, vp.
vp --> v, np.
v ——> [likes].
np --> [john].
np --> [mary].

Procedure:

— for each DCG rule, add one
argument that encodes the
equivalent meaning fragment

DCG rules:

np --> [john].
np --> [mary].

add one argument:

np() —--> [john].
np() --> [mary].

substitute meaning fragment:
np (john) --> [john].
np (mary) --> [mary].

likes(john,mary

/\

)

john likes(X,mary)
, T~

John likes(X,Y)

likes

Equivalences:

Meaning

john

mary

likes(X,Y)
likes(X,mary)
likes (X, john)
likes(john,mary)

mary

|

Mary

Word/Phrase
John

Mary

likes

likes Mary
likes John

John likes Mary

Modify DCG to include Meaning

Basic DCG:

sentence --> np, vp.
vp --> v, np.
v ——> [likes].
np --> [john].
np --> [mary].

Procedure:

— for each DCG rule, add one
argument that encodes the
equivalent meaning fragment

DCG rules:

v ——> [likes].

add one argument:

v() —-——> [likes].

substitute meaning fragment:
v(likes(X,Y)) --> [likes].

likes(john,mary)

/\
john likes(X,mary)
, T~

John likes(X)Y) mary

| |

likes Mary

Equivalences:

Meaning Word/Phrase
john John

mary Mary
likes(X,Y) likes
likes(X,mary) likes Mary
likes (X, john) likes John

likes(john,mary) John likes Mary

Modify DCG to include Meaning

DCG rule: likes(john,mary)
vp --> v, np.
/\
we already have transformed v john likes(X.mary)
and np to take one meaning | o~
argument: John likes(X)Y) mary
v(likes (X,Y)) --> [likes]. \
np (john) --> [john]. l
np (mary) --> [mary]. likes hAany
so we have:
vel) mm> vim) s np (NP - Equivalences:
variables .]
vm = “verb meaning”’, NPm = “NP meaning” Meanmg Word/Phrase
. joh Joh
we need to encode the notion ;Zr; Mzr;
of argument saturation: likes (X,Y) likes
e.g. Vm = likes(X,Y) likes (X, mary) likes Mary
NPm = mary likes (X, john) likes John
we want the “VP meaning” to be likes(john,mary) John likes Mary

likes(X,mary)
i.e. argument Y gets saturated

Argument Saturation

we’re gonna need the Prolog built-in arg/3:

— arg (Nth, Predicate, Argument)
— means make Nth argument of Predicate equal to Argument

example:

— given predicate p (a, b, c)
— then

- ?- arg(llp(alblc)lx)'
— ?- arg(2,p(a,b,c),X).
— ?- arg(3,p(a,b,c),X).
— ?- arg(4,p(a,b,c),X). No

example:

— given predicate 1ikes (john, mary)

— then

— ?- arg(l,likes(john,mary),X). X=john
— ?- arg(2,likes(john,mary),X). X=mary

XX
nnn
Q O o

Modify DCG to include Meaning

we already have transformed v
and np to take one meaning

argument:
v(likes(X,Y)) --> [likes].
np (john) --> [john].
np (mary) --> [mary].
we have:
vp() --> v(Vm), np(NPm).

we need to encode the notion
of argument saturation:
e.g. Vvm = likes(X,Y)
NPm = mary
here:
VP meaning must be vm
but with arg (2, vm, NPm) being true

i.e. 2nd argument of vm (namely Y) must
be the NP meaning

likes(john,mary)

/\
john likes(X,mary)
, T~

John likes(X)Y) mary

| |

likes Mary

arg (Nth, Predicate, Argument)
means make Nth argument of
Predicate equalto Argument

Modify DCG to include Meaning

« we need to encode the notion of argument

) likes(john,mary)
saturation:

e.g. Vvm = likes(X,Y) john likes(X,mary)
NPm = mary | T~

VP meaning must be vm
but with arg (2, vm, NPm) being true

we then have: \ l

John likes(X)Y) mary

likes Mary
vp (Vm) --> v(Vm), np(NPm), {arg(2,VBm,NPm)}.
New notation: “curly braces” .
{ <Goal> } means call Prolog <Goal> arg (Nth,Predicate, Argument)
{arg (2,VBm,NPm) } means call arg (2, VBm, NPm) means make Nth argument of
Predicate equalto Argument

« perhaps more clearly, we can re-write our DCG rule as:
vp (Vm) —--> v (Vm), np(NPm), {saturate2(Vm,NPm)}.

« and define the rule (in the Prolog database):
saturate2 (P,A) :- arg(2,P,A).

Modify DCG to include Meaning

finally: likes(john,mary)

sentence --> np, Vp.
we already have transformed vp and np to take —

Y P P john likes(X,mary)

one meaning argument: | o~

vp (Vm) --> v (Vm), np(NPm), {saturate2 (Vm,NPm)}. John erS(X;Y) mary

np (john) --> [john].

np (mary) --> [mary]. \ l
we need to encode the notion of argument likes Mary
saturation:

e.g. Vm = likes(X,mary)
NPm = john
we want the “sentence meaning” to be
likes(john,mary)

means make Nth argument of
Predicate equalto Argument

i.e. 1st argument X gets saturated { <Goal> } means call Prolog <Goal>
we then have: {arg (2, VBm,NPm) } means
sentence (VPm) --> np (NPm), vp (VPm), call arg (2, VBm, NPm)

arg (Nth, Predicate, Argument)

{arg(1l,VPm,NPm) }.

Modify DCG to include Meaning

e we are done...

Basic DCG:

sentence --> np, vp.
vp --> v, np.
v ——> [likes].
np --> [john].
np --> [mary].

Query: (we supply two arguments:
sentence as a list and an empty list)

?—- sentence ([john, likes,mary], []) .
Yes (Answer)

You now know how to turn a
basic DCG into one that
“returns” the meaning of a
sentence

Meaning DCG:
- sentence(P) --> np(NP1l), vp(P),
{saturatel (P,NP1) }.

- vp(P) --> v(P), np(NP2), {saturate2(P,NP2)}.

(

- v(likes(X,Y)) --> [likes].

- np(john) --> [john].

- np(mary) --> [mary].

- saturatel (P,A) :- arg(l,P,A).

- saturate2(P,A) :- arg(2,P,A).

Query: (supply one more argument)
?- sentence (M, [john, likes,mary], []) .

M = likes(john,mary)

Exercise

Basic DCG for practice (use menu File -> New to create a file):

sentence --> np, Vvp.
vp —-—-> v, np.

v ——> [likes].

v --> [hates].

np --> det, n.

np --> [john].

np --> [mary].

det --> [the].

det --> [a].

n --> [book].

Sentences:
- John hates the book
- John likes mary

Phrase Structures:

- sentence (np (john) , vp (v (hates) ,np (det (the) ,n (book)))))
- sentence (np (john) ,vp (v (likes) ,np (mary)))

Meanings:
- hates (john, book) .
- likes (john,mary) .

