
LING 364: Introduction to
Formal Semantics

Lecture 7
February 2nd

Administrivia

• today
– (3:30pm – 4:40pm)

• lecture here in Comm 214
– (4:45pm – 5:45pm) (EXTRA)

• lab practice in Social Sciences Lab 224

• also next week...
– see schedule in Lecture 6 slides

Last Time
• Compositionality: meaning of a sentence is composed from

the meaning of its subparts
• example:

– given “John likes Mary” corresponds to likes(john,mary).
– meaning fragments are

• word or phrase meaning
• John john
• likes Mary likes(X,mary).
• likes likes(X,Y).
• Mary mary

– each word here has a contribution to make to the meaning of the
complete sentence

– cf. it is raining (pleonastic “it”/ambient “it”)

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

Last Time
• Language violates compositionality in the case of idioms
• example:

– John kicked the bucket
– literal meaning:

• word meaning
• john john
• kick kick(X,Y).
• bucket bucket

– idiomatic meaning:
• word meaning
• john john
• kick <None>
• bucket <None>
• kick the bucket die(X). cf. “kick a bucket”

humanities.byu.edu/.../ kick_the_bucket.html

sentence

np

np

vp

vJohn

bucketkicked the

Today

• look in some detail at what we started last time...
• Basic DCG:

sentence --> np, vp.

vp --> v, np.
v --> [likes].
np --> [john].
np --> [mary].

• Query: (we supply two arguments:
sentence as a list and an empty list)
?- sentence([john,likes,mary],[]).

Yes (Answer)

• Phrase Structure DCG:
sentence(sentence(NP,VP)) --> np(NP), vp(VP).

vp(vp(V,NP)) --> v(V), np(NP).

v(v(likes)) --> [likes].

np(np(john)) --> [john].

np(np(mary)) --> [mary].

• Query: (supply one more argument)
• ?- sentence(PS,[john,likes,mary],[]).

PS = sentence(np(john),vp(v(likes),np(mary)))

How to turn a basic DCG into one that “returns” more than Yes/No

Today

• look in some detail at what we started last time...
• Basic DCG:

sentence --> np, vp.

vp --> v, np.
v --> [likes].
np --> [john].
np --> [mary].

• Query: (we supply two arguments:
sentence as a list and an empty list)
?- sentence([john,likes,mary],[]).

Yes (Answer)

• Meaning DCG:
– sentence(P) --> np(NP1), vp(P),

{saturate1(P,NP1)}.
– vp(P) --> v(P), np(NP2), {saturate2(P,NP2)}.
– v(likes(X,Y)) --> [likes].
– np(john) --> [john].
– np(mary) --> [mary].
– saturate1(P,A) :- arg(1,P,A).
– saturate2(P,A) :- arg(2,P,A).

• Query: (supply one more argument)
• ?- sentence(M,[john,likes,mary],[]).

M = likes(john,mary)

How to turn a basic DCG
into one that “returns” the
meaning of a sentence

Part 1

• Computing Phrase Structure

Representing Phrase Structure in Prolog

• We don’t directly draw trees in Prolog, but we can use an “equivalent”
representation

• example:
sentence(np(john),vp(v(likes),np(mary)))

sentence

np

John np

vp

v

Marylikes

Notation:
Prolog Tree
john john
mary mary
likes likes

np(john)

np(mary) np

Mary

v

likes

np

John

Prolog Tree
v(likes)

vp(v(likes),np(mary))

np

vp

v

Marylikes

Modify DCG to include Phrase Structure

• Basic DCG:
sentence --> np, vp.
vp --> v, np.
v --> [likes].
np --> [john].

np --> [mary].

• Procedure:
– for each DCG rule, add

one argument that
encodes the equivalent
tree fragment

• DCG rules:
np --> [john].
np --> [mary].

• add one argument:
np() --> [john].
np() --> [mary].

• substitute tree fragment:
np(np(john)) --> [john].
np(np(mary)) --> [mary].

sentence

np

John np

vp

v

Marylikes

Prolog Tree
john john
mary mary
likes likes

np(john)

np(mary) np

Mary

v

likes

np

John

Prolog Tree
v(likes)

vp(v(likes),np(mary))

np

vp

v

Marylikes

sentence(np(john),vp(v(likes),np(mary)))

Modify DCG to include Phrase Structure

• Basic DCG:
sentence --> np, vp.
vp --> v, np.
v --> [likes].
np --> [john].

np --> [mary].

• Procedure:
– for each DCG rule, add

one argument that
encodes the equivalent
tree fragment

• DCG rule:
v --> [likes].

• add one argument:
v() --> [likes].

• substitute tree fragment:
v(v(likes)) --> [likes].

sentence

np

John np

vp

v

Marylikes

Prolog Tree
john john
mary mary
likes likes

np(john)

np(mary) np

Mary

v

likes

np

John

Prolog Tree
v(likes)

vp(v(likes),np(mary))

np

vp

v

Marylikes

sentence(np(john),vp(v(likes),np(mary)))

Modify DCG to include Phrase Structure

• DCG rule:
vp --> v, np.

• add one argument:
vp() --> v, np.

what goes in there?

• well, we already have
transformed v and np to take
one argument:
v(v(likes)) --> [likes].
np(np(john)) --> [john].
np(np(mary)) --> [mary].

• so we have:
vp() --> v(X), np(Y).

can’t just write vp(v(likes),np(mary))
Y could be np(john), could be np(mary)
we could also (in principle) have other verbs:
e.g. v(v(hates)) --> [hates].

• finally:
vp(vp(X,Y)) --> v(X), np(Y).

sentence

np

John np

vp

v

Marylikes

Prolog Tree
john john
mary mary
likes likes

np(john)

np(mary) np

Mary

v

likes

np

John

Prolog Tree
v(likes)

vp(v(likes),np(mary))

np

vp

v

Marylikes

sentence(np(john),vp(v(likes),np(mary)))

Modify DCG to include Phrase Structure

• DCG rule:
sentence --> np, vp.

• add one argument:
sentence() --> np, vp.

what goes in there?

• well, we already have
transformed vp and np to
take one argument:
vp(vp(X,Y)) --> v(X), np(Y).
np(np(john)) --> [john].
np(np(mary)) --> [mary].

• so we have:
sentence() --> np(X),vp(Y).

• finally:
sentence(sentence(X,Y)) -->

np(X), vp(Y).

sentence

np

John np

vp

v

Marylikes

Prolog Tree
john john
mary mary
likes likes

np(john)

np(mary) np

Mary

v

likes

np

John

Prolog Tree
v(likes)

vp(v(likes),np(mary))

np

vp

v

Marylikes

sentence(np(john),vp(v(likes),np(mary)))

Modify DCG to include Phrase Structure

• modification to include one extra argument for each DCG rule is now
complete

• Basic DCG:
sentence --> np, vp.

vp --> v, np.
v --> [likes].
np --> [john].
np --> [mary].

• Query: (we supply two arguments:
sentence as a list and an empty list)
?- sentence([john,likes,mary],[]).

Yes (Answer)

• Phrase Structure DCG:
sentence(sentence(NP,VP)) --> np(NP), vp(VP).

vp(vp(V,NP)) --> v(V), np(NP).

v(v(likes)) --> [likes].

np(np(john)) --> [john].

np(np(mary)) --> [mary].

• Modified Query: (supply one more argument)
• ?- sentence(PS,[john,likes,mary],[]).

PS = sentence(np(john),vp(v(likes),np(mary)))

Part 2

• Computing Meaning

Representing Meaning in Prolog

• We don’t need to represent trees here, but we still need to know the
equivalences ...

• example:
– John likes Mary
– likes(john,mary)

Equivalences:
Meaning Word/Phrase
john John
mary Mary
likes(X,Y) likes
likes(X,mary) likes Mary
likes(X,john) likes John
likes(john,mary) John likes Mary

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

Modify DCG to include Meaning

• Basic DCG:
sentence --> np, vp.
vp --> v, np.
v --> [likes].
np --> [john].

np --> [mary].

• Procedure:
– for each DCG rule, add one

argument that encodes the
equivalent meaning fragment

• DCG rules:
np --> [john].
np --> [mary].

• add one argument:
np() --> [john].
np() --> [mary].

• substitute meaning fragment:
np(john) --> [john].

np(mary) --> [mary].

Equivalences:
Meaning Word/Phrase
john John
mary Mary
likes(X,Y) likes
likes(X,mary) likes Mary
likes(X,john) likes John
likes(john,mary) John likes Mary

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

Modify DCG to include Meaning

• Basic DCG:
sentence --> np, vp.
vp --> v, np.
v --> [likes].
np --> [john].

np --> [mary].

• Procedure:
– for each DCG rule, add one

argument that encodes the
equivalent meaning fragment

• DCG rules:
v --> [likes].

• add one argument:
v() --> [likes].

• substitute meaning fragment:
v(likes(X,Y)) --> [likes].

Equivalences:
Meaning Word/Phrase
john John
mary Mary
likes(X,Y) likes
likes(X,mary) likes Mary
likes(X,john) likes John
likes(john,mary) John likes Mary

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

Modify DCG to include Meaning

• DCG rule:
vp --> v, np.

• we already have transformed v
and np to take one meaning
argument:
v(likes(X,Y)) --> [likes].
np(john) --> [john].
np(mary) --> [mary].

• so we have:
vp() --> v(Vm), np(NPm).

variables
Vm = “verb meaning”, NPm = “NP meaning”

• we need to encode the notion
of argument saturation:
e.g. Vm = likes(X,Y)
 NPm = mary
we want the “VP meaning” to be

 likes(X,mary)
i.e. argument Y gets saturated

Equivalences:
Meaning Word/Phrase
john John
mary Mary
likes(X,Y) likes
likes(X,mary) likes Mary
likes(X,john) likes John
likes(john,mary) John likes Mary

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

Argument Saturation

• we’re gonna need the Prolog built-in arg/3:
– arg(Nth,Predicate,Argument)
– means make Nth argument of Predicate equal to Argument

• example:
– given predicate p(a,b,c)
– then
– ?- arg(1,p(a,b,c),X). X=a
– ?- arg(2,p(a,b,c),X). X=b
– ?- arg(3,p(a,b,c),X). X=c
– ?- arg(4,p(a,b,c),X). No

• example:
– given predicate likes(john,mary)
– then
– ?- arg(1,likes(john,mary),X). X=john
– ?- arg(2,likes(john,mary),X). X=mary

Modify DCG to include Meaning

• we already have transformed v
and np to take one meaning
argument:
v(likes(X,Y)) --> [likes].

np(john) --> [john].
np(mary) --> [mary].

• we have:
vp() --> v(Vm), np(NPm).

• we need to encode the notion
of argument saturation:
e.g. Vm = likes(X,Y)
 NPm = mary

• here:
VP meaning must be Vm
but with arg(2,Vm,NPm)being true

i.e. 2nd argument of Vm (namely Y) must
be the NP meaning

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

arg(Nth,Predicate,Argument)
means make Nth argument of
Predicate equal to Argument

Modify DCG to include Meaning

• we need to encode the notion of argument
saturation:
e.g. Vm = likes(X,Y)
 NPm = mary
 VP meaning must be Vm
 but with arg(2,Vm,NPm)being true

• we then have:
vp(Vm) --> v(Vm), np(NPm), {arg(2,VBm,NPm)}.

• New notation: “curly braces”
• { <Goal> } means call Prolog <Goal>
• {arg(2,VBm,NPm)} means call arg(2,VBm,NPm)

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

arg(Nth,Predicate,Argument)
means make Nth argument of
Predicate equal to Argument

• perhaps more clearly, we can re-write our DCG rule as:
vp(Vm) --> v(Vm), np(NPm), {saturate2(Vm,NPm)}.

• and define the rule (in the Prolog database):
saturate2(P,A) :- arg(2,P,A).

Modify DCG to include Meaning

• finally:
sentence --> np, vp.

• we already have transformed vp and np to take
one meaning argument:
vp(Vm) --> v(Vm), np(NPm), {saturate2(Vm,NPm)}.
np(john) --> [john].
np(mary) --> [mary].

• we need to encode the notion of argument
saturation:
e.g. Vm = likes(X,mary)
 NPm = john
we want the “sentence meaning” to be

 likes(john,mary)
i.e. 1st argument X gets saturated

• we then have:
sentence(VPm) --> np(NPm), vp(VPm),

{arg(1,VPm,NPm)}.

sentence

np

np

vp

vJohn

Marylikes

marylikes(X,Y)

likes(X,mary)john

likes(john,mary)

arg(Nth,Predicate,Argument)
means make Nth argument of
Predicate equal to Argument

{ <Goal> } means call Prolog <Goal>
{arg(2,VBm,NPm)} means
call arg(2,VBm,NPm)

Modify DCG to include Meaning

• we are done...
• Basic DCG:

sentence --> np, vp.

vp --> v, np.
v --> [likes].
np --> [john].
np --> [mary].

• Query: (we supply two arguments:
sentence as a list and an empty list)
?- sentence([john,likes,mary],[]).

Yes (Answer)

• Meaning DCG:
– sentence(P) --> np(NP1), vp(P),

{saturate1(P,NP1)}.
– vp(P) --> v(P), np(NP2), {saturate2(P,NP2)}.
– v(likes(X,Y)) --> [likes].
– np(john) --> [john].
– np(mary) --> [mary].
– saturate1(P,A) :- arg(1,P,A).
– saturate2(P,A) :- arg(2,P,A).

• Query: (supply one more argument)
• ?- sentence(M,[john,likes,mary],[]).

M = likes(john,mary)

You now know how to turn a
basic DCG into one that
“returns” the meaning of a
sentence

Exercise
• Basic DCG for practice (use menu File -> New to create a file):

sentence --> np, vp.
vp --> v, np.
v --> [likes].
v --> [hates].
np --> det, n.
np --> [john].
np --> [mary].
det --> [the].
det --> [a].
n --> [book].

• Sentences:
– John hates the book
– John likes mary

• Phrase Structures:
– sentence(np(john),vp(v(hates),np(det(the),n(book)))))
– sentence(np(john),vp(v(likes),np(mary)))

• Meanings:
– hates(john,book).
– likes(john,mary).

