LING 364: Introduction to Formal Semantics

Lecture 5
January 26th

Administrivia

- Reminder:
- Homework 1 due on tonight (midnight deadline)
- questions? ask now
- Reading Assignment
- Chapter 2: Putting a Meaning Together from Pieces

Last Time

- Translating English into logical meaning

Mary is a student
who is a student?

student(mary).

?- student(X).

Last Time

- Goal:
- formalize language to the degree we can have systems that can understand and answer questions wrt. possible worlds
- demo
- |: john is a student.
- student(john).
- |: mary is a student.
- student(mary).
- |: mary is a baseball fan.
- baseball_fan(mary).
- |: who is a student and not a baseball fan?
- john.
- | ?- go.
- \mid : who is a student and a baseball fan?
- mary.
to do this we have to be able to
(1) parse, and
(2) assign meaning to the English input

Last Time

- Syntax:

- A formal grammar enables us to logically break down a sentence into its constituent parts

X-bar phrase structure subject: [12 [NP john] 11] VP: is a student copula: is
complement of VP:
$\left[_{N P}\left[\begin{array}{ll}\text { DET }\end{array} a\right]_{N 1}\right.$ student] $]$ (predicate NP)

Syntactic Structure

- A formal grammar enables us to logically break down a sentence into its constituent parts

X-bar phrase structure
specifier of CP: [CP [NP who] C1]
head of CP: C: auxiliary verb is subject: [12 ${ }_{\text {NP }}$ trace] 11]
subject is coindexed [1] with specifier of CP
VP: [y trace] a student
verb (trace) is coindexed [2] with is complement of VP:
$\left[_{\mathrm{NP}} \text { [DET } \mathrm{a}\right]_{\mathrm{N} 1}$ student]]

Phrase Structure Rules

- Simple rules:
- SBar \rightarrow S subject
- $S \rightarrow$ NPVP
- $\mathrm{VP} \rightarrow \mathrm{VNP} \quad$ object
- $V \rightarrow$ is
- NP \rightarrow DET N
- NP \rightarrow ProperNoun
- ProperNoun \rightarrow John
- DET \rightarrow a
- $N \rightarrow$ student

Phrase Structure Rules

- John is a [pred student]
- John [pred likes] Mary
- John is [pred happy]
- which is the predicate?
- V (main verb: likes)
- $\mathrm{V}_{\text {aux }}$ is (copula carries little meaning)
- complement of copula is the predicate
- Note:
- gotta be careful
- John is the student
- Simple rules:
- SBar \rightarrow S subject
- $S \rightarrow$ NP VP
- $\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$. object
- $V \rightarrow$ is
- NP \rightarrow DET N
- NP \rightarrow ProperNoun
- ProperNoun \rightarrow John
- DET \rightarrow a
- $\mathrm{N} \rightarrow$ student

Phrase Structure Rules

- Rules:
- SBar \rightarrow WhNoun Aux S
- WhNoun \rightarrow who
- Aux \rightarrow is subject
- $S \rightarrow$ NPtrace VP empty
- NPtrace $-\varepsilon$
- VP \rightarrow Vtrace NP
- Vtrace $\rightarrow \varepsilon$
- NP \rightarrow DET N
- DET \rightarrow a
- $\mathrm{N} \rightarrow$ student
plus associations by coindexation between traces and contentful items

Today's Topics

1. What is a formal grammar?
2. Prolog's notation for formal grammars

- Definite Clause Grammars

3. Discussion of Putting a Meaning Together from Pieces
4. Short Quiz

What is a formal grammar?

- example

NP = Noun Phrase
VP = Verb Phrase

- example
- Sentence \rightarrow NP VP
- VP \rightarrow Verb NP
- Verb \rightarrow took
- NP \rightarrow the man
- NP \rightarrow the book
- production (or grammar) rule format
- LHS \rightarrow RHS
- LHS = Left Hand Side
- $\rightarrow \quad=$ "expands to" or "rewrites to"
- RHS = Right Hand Side

What is a formal grammar?

- example
- Sentence \rightarrow NP VP
- VP \rightarrow Verb NP
- Verb \rightarrow took
- NP \rightarrow the man
- NP \rightarrow the book
derivation
- top-down (one of many)

1. Sentence
2. NP VP
3. NP Verb NP
4. NP took NP
5. the man took NP
6. the man took the book

- derivation
- top-down (alternative)

1. Sentence
2. NP VP
3. the man VP
4. the man Verb NP
5. the man took NP
6. the man took the book

What is a formal grammar?

- example
- Sentence \rightarrow NP VP
- VP \rightarrow Verb NP
- Verb \rightarrow took
- NP \rightarrow the man
- NP \rightarrow the book
derivation
- bottom-up (one of many)

1. the man took the book
2. NP took the book
3. NP Verb the book
4. NP Verb NP
5. NP VP
6. Sentence

- derivation
- bottom-up (alternative)

1. the man took the book
2. the man took NP
3. the man Verb NP
4. the man $V P$
5. NP VP
6. Sentence

What is a formal grammar?

- example
- Sentence \rightarrow NP VP
- VP \rightarrow Verb NP
- Verb \rightarrow took
- NP \rightarrow the man

- this grammar can generate more than one sentence
- examples
- the man took the book
- \#the book took the man
\# = semantically odd
- other sentences?
- add new rule
- \quad Verb \rightarrow bought
- examples
- the man took the book
- the man bought the book
- \#the book took the man
\# = semantically odd
- \#the book bought the man

What is a formal grammar?

- example
- Sentence \rightarrow NP VP
- VP \rightarrow Verb NP
- Verb \rightarrow took
- NP \rightarrow the man
- NP \rightarrow the book

- formally: a grammar contains the following 4 things
- <N,T,P,S>
- a set of non-terminal symbols (N)
- a set of terminal symbols (T)
- production rules (P) of the form
- a designated start symbol (S)
- example
- Non-terminals: \quad SSentence,VP,NP,Verb\}
- Terminals: \{the,man,book,took\}
- Start symbol: Sentence
- Production rules: set of LHS \rightarrow RHS rules

Grammar Rules

- Good news!
- Prolog supports grammar rules
- it knows how to interpret them (directly)
- it can use grammar rules supplied by the user to construct a derivation automatically

Prolog Grammar Rules

- Prolog's version of grammar rules:
- Definite Clause Grammar (DCG)
- Prolog's format
- terminals and non-terminal symbols begin with lowercase letters
- e.g. sentence, vp, np, book, took
- Note: variables begin with an uppercase letter (or underscore)
- -->
- is the rewrite symbol
- terminals are enclosed in square brackets to distinguish them from non-terminals (list notation)
- e.g. [the], [book], [took]
- comma (,) is the concatenation symbol
- semicolon (;) is the disjunction symbol
- a period (.) is required at the end of all DCG rules

Prolog Grammar Rules

- example
- Sentence \rightarrow NP VP
- VP \rightarrow Verb NP
- Verb \rightarrow took
- NP \rightarrow the man

- Prolog DCG version

```
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> [the], [man].
- np --> [the], [book].
```

- Important Note
- don't enter these rules into the database using assert/1.
- Use a file.

Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> [the], [man].
- np --> [the], [book].

query:
- ?- sentence(S,[]).
- $\quad S=$ sentence (as a list)
- [] = empty list
- i.e. call the start symbol as a predicate and
- supply two arguments, a list and an empty list

Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> [the], [man].
- np --> [the], [book].

example queries
- ?- sentence([the,man,took, the,book],[]).
- Yes
- "the man took the book" is a member of the language generated by the grammar
- ?- sentence([man,took,the,book], []).
- No
- "man took the book" is not in the grammar
- "man took the book" is not generated by the grammar

Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> [the], [man].
- np --> [the], [book].

other queries
- ?- sentence([the, man, took, X, book], []).
- $\mathrm{X}=$ the
- ?- sentence (S, []).
- $S=[$ the, man, took, the, man] ;
- $S=[$ the, man, took, the, book] ;
- $S=[$ the, book, took, the, man] ;
- $S=[$ the, book, took, the, book] ;
- $\quad \mathrm{NO}$

Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> [the], [man].
- np --> [the], [book].
notes

$$
\begin{aligned}
& -\quad n p-->[\text { the, man }] . \\
& -\quad n p-->[\text { the, book }] .
\end{aligned}
$$

OK
OK
more grammar
det $=$ determiner

- np --> det, [man].
- np --> det, [book].
- det --> [the].
- det --> [a].

Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> det, [man].
- np --> det, [book].
- det --> [the].
- det --> [a].

query

- ?- sentence (S,[]).
- generates 16 different answers for S
- 2 choices for det
a, the
- 2 choices for head noun
- total of 4 different choices for NP
- 2 choices for NP
man, book
(al (the)) ((man) | (book))
as subject, as object
- total $=4^{2}=16$

Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> det, [man].
- np --> det, [book].
- det --> [the].

- det --> [a].

```
query
- ?- sentence([the,man,took|L],[]).
- L = [the, man] ;
- L = [a, man] ;
- L = [the, book] ;
- L = [a, book] ;
- No
```


Prolog Grammar Rules

- example
- sentence --> np, vp.
- vp --> verb, np.
- verb --> [took].
- np --> det, [man].
- np --> det, [book].
- det --> [the].

- det --> [a].

query

- ?- sentence([X,man,took,X,book],[]).
- X $=$ the ;
- $\mathrm{X}=\mathrm{a}$;
- $\quad \mathrm{No}$

2 choices

Putting a Meaning Together from Pieces

- Chapter ties into what we've been doing:
-driven by syntax
- we're going to compute meaning in parts

Putting a Meaning Together from Pieces

- 2.2 Incomplete Propositions
- Shelby barks barks(shelby).
- barks
???

Putting a Meaning Together from Pieces

- 2.2 Incomplete Propositions
- Shelby barks barks(shelby).
- barks barks (X).
- predicate
- = unsaturated proposition

Putting a Meaning Together from Pieces

- 2.3 Saturation
- Shelby barks
- barks
- Shelby

barks(shelby).
barks(X).
shelby

- predication:
- relation between predicate barks(X) and its subject shelby
- barks is "predicated of" shelby
- i.e. barks (X) and $X=$ shelby

Putting a Meaning Together from Pieces

- 2.4 Compositionality
- (discrete) infinity and creativity of language (new phrases)
- Principle of Compositionality
- Meaning(Phrase) = composition of Meaning(SubPart ${ }_{1}$), Meaning(SubPart ${ }_{2}$) and so on...
- Example: Shelby barks

Putting a Meaning Together from Pieces

- 2.5 Syntax and Semantics
- Principle of Compositionality can be realized in different ways
- Theories of Meaning:
- rule-by-rule theories
- interpretive theories
- Example:
- What did John sit on?
- John sat on what
(+ Wh-phrase movement)

A different kind of example

- Think about the meaning of any in:

1. any dog can do that trick
2. I didn't see any dog
3. *I saw any dog
how many meanings does any have?
do you see any potential problems for rule-by-rule theories?

A different kind of example

- Think about the meaning of any in:

1. any dog can do that trick
2. I didn't see any dog
3. *I saw any dog
how many meanings does any have?
a) "free choice" any
b) negative polarity item (NPI) any

Quiz

- [5pts]
- give meaning fragments for:
- John
- likes Mary
- likes
- in "John likes Mary" corresponds to likes(john,mary).
- give syntactic structures for:
- who is a student and not a baseball fan?
- who is not a baseball fan or a student?

