
LING 364: Introduction to
Formal Semantics

Lecture 3
January 19th

Administrivia

• mailing list
– ling364@listserv.arizona.edu
– you should have received a welcome email

Today’s Topic

• Getting familiar with SWI-Prolog

• Do exercises in class and as part of
Homework 1

How to start

• Windows Start Menu

Introduction

• Prolog is a logic programming language
– allows you to express

• facts
• inference rules

– can hold a database of these two things
• the database represents a scenario or (possible) world
• initially, the world is empty
• you can add facts or inference rules to this database

– finally, you can ask questions about this world
• questions involving facts or facts inferred by inference

rules

Facts

• Example:
– Mary is a baseball fan.
– Pete is a baseball fan.
– John is a baseball fan.

Facts

• Example:
– baseball_fan(mary).
– baseball_fan(pete).
– baseball_fan(john).

baseball_fan().

predicate

argument
underscore: _
can be part of a word, use it
to make predicates easier to
read, cf. baseballfan

no space between
predicate and (, and
there is always a
period at the end of
a fact or rulewords begin with a lower case letter

e.g. mary not Mary
(variables begin with an initial upper case letter)

Facts

• How to add facts to the database (world):

– ?- assert().
• Means:

– assert <Fact> is true in this world
• Example:

– ?- assert(baseball_fan(mary)).
– asserts baseball_fan(mary) is true in this world

<Fact>
Don’t type in part
of line shown in blue

Facts

• How to get a list of what’s in the world:
– ?- listing.

• How to “unadd” or retract a fact from the
database:

– ?- retract().
<Fact>

Facts

• Asking questions:
– ?- baseball_fan(mary).
– Yes
– ?- baseball_fan(jill).
– No

• Assuming our world
contains:
– baseball_fan(mary).
– baseball_fan(pete).
– baseball_fan(john).

Prolog uses the Closed World Assumption
the world is defined by ?- listing.
i.e. if a fact isn’t in or inferable from the database,
it isn’t true in our world

Facts

• Questions with logical variables
– Logic variables are words that begin with an upper

case letter
• e.g. X, Mary, MARY, M33 are all (distinct) variables
• x, mARY, m33 are all individuals (non-variables)

– Example:
• ?- baseball_fan(X).
• asks what is the value of X such that the proposition

baseball_fan(X). is true in this world
• X = mary ;
• X = pete ;
• X = john ;
• No

semicolon ;
indicates disjunction (or)
used to ask Prolog for more answers

Facts
• Questions with logical variables

– Example:
• ?- baseball_fan(x).
• No
• asks if individual x is a baseball fan in this world

– Example:
• ?- baseball_fan(X), baseball_fan(Y).
• X = mary, Y = mary ;
• X = mary, Y = pete ;
• a total of 9 possible answers

– Example:
• ?- baseball_fan(X), baseball_fan(X).
• has only 3 possible answers

comma ,
indicates conjunction (and)

variable scope
the scope of a variable is
the entire query (or rule)
e.g. two X’s must be the
same X

Facts

• Questions with logical variables
– Example:

• ?- baseball_fan(X), baseball_fan(Y), \+ X = Y.
• asks for what value of X and for what value of Y such

that baseball_fan(X). is true and baseball_fan(Y). is true
in this world

• and it is not (\+) the case that X = Y (equals)
• How many answers should I get?

Prolog negation \+
a limited form of logical negation

Useful things to know...

• Data entry:
– you can either enter facts at the Prolog prompt ?-
– or edit your facts in a text file, give it a name, and

load in or “consult” that file ?- [<filename>].

Useful things to know...

• The up arrow and down arrow keys can
be used at the Prolog prompt to retrieve
previous queries
– you can edit them and resubmit
– saves typing...

Useful things to know...
• Getting stuck?

– Type <control>-C
– Then type a (for abort)

– gets you back to the Prolog interpreter prompt (?-)
• how to see what the current working directory is?

– (the working directory is where your files are stored)
– important: every machine in the lab is different
– ?- working_directory(X,Y).

– X: current working directory, Y: new working directory

• How to change to a new working directory?
– ?- working_directory(X,NEW).

Homework 1

• Do the following exercises during this lab
session and after class as your homework
– Submit your answers by email
– Submit all relevant output and databases

• you can copy and paste from the Prolog window

• Homework Policy (Revisited):
– due one week from today
– in my inbox by midnight

Exercise 1a

(4pts)
• Enter Prolog facts corresponding to:

– Mary is a student
– Pete is a student
– Mary is a baseball fan
– Pete is a baseball fan
– John is a baseball fan

• Construct the Prolog query corresponding to:
– who is both a student and a baseball fan?

• Run the query

Exercise 1b

• (2pts)
• Construct the Prolog query

corresponding to:
– who is a baseball fan and not a student?

• Run the query

Relations as Facts
– So far we have just been using predicates with a

single argument
– It is useful to have predicates with multiple

arguments (separated by a comma) to express
relations

• Example:
– the square is bigger than the circle
– bigger_than(square,circle).

• Queries:
– ?- bigger_than(square,X).
– ?- bigger_than(X,circle).

bigger_than/2
means predicate
bigger_than takes
two arguments

Rules

• We can write inference rules in Prolog
and put them in the database

• Prolog will use them to make inferences
when referenced

• Example (adapted from quiz 1):
– Mary is sleeping
– John is snoring
– snoring presupposes sleeping

Rules

• English:
– Mary is sleeping
– John is snoring
– (R1) snoring presupposes sleeping

• Prolog:
– sleeping(mary).
– snoring(john).
– sleeping(X) :- snoring(X).
– means X is sleeping if X is snoring

<Fact1> :- <Fact2>.
:- means “if”

head body

Prolog limitations:
head must contain
only a single fact
body may contain
facts connected by ;
and , or negated \+

Rules
• Prolog:

– sleeping(mary).
– snoring(john).
– sleeping(X) :- snoring(X).

• Query:
– ?- sleeping(john).

– notice that there is no
fact sleeping(john). in the
database, so we cannot
immediately conclude it
is true.

• but we can use the inference
rule for (R1) since the query
matches the head of the rule
– i.e. from:

• ?- sleeping(john).
• sleeping(X) :- snoring(X).

– we can reduce the query to:
• ?- snoring(john).

– which matches
• snoring(john).

– in the database
• we can conclude then that

sleeping(john). is true in this
world

Exercise 2

• (4pts)
– Two sentences are synonymous if they have the same

meaning, i.e. they have the same truth conditions:
– (5) The square is bigger than the circle
– (6) The circle is smaller than the square

– (chapter 1: page 18)
– we know
– (R2) If X is bigger than Y, then Y is smaller than X

• Write the Prolog fact and rule corresponding to (5) and (R2)
• Demonstrate you can conclude (6)

Exercise 3a

• (2pts)
– Two sentences are contrary if both can’t be true:
– (7) The square is bigger than the circle
– (8) The square is smaller than the circle

– (chapter 1: page 19)
• Enter the Prolog fact corresponding to (7) and

use (R2) from exercise 2
• Construct the Prolog query corresponding to
 the conjunction of (7) and (8).
• Show the result of the query.

Exercise 3b
• (3pts)

– Two sentences are contrary if both can’t be true:
– (7) The square is bigger than the circle
– (8) The square is smaller than the circle

– (chapter 1: page 19)
• Enter the Prolog fact corresponding to (8) and (R3)

– (R3) If X is smaller than Y, then Y is bigger than X
• Construct the Prolog query corresponding to
 the conjunction of (7) and (8).
• Show the result of the query.

Negation and Prolog
• Prolog has some limitations with respect to \+

(negation). We have already mentioned this before:

<Fact1> :- <Fact2>.
:- means “if”

head body Prolog limitations:
head must contain
only a single fact
body may contain
facts connected by ;
and , or negated \+

• Doesn’t allow:
– \+ baseball_fan(lester).
– \+ baseball_fan(X) :- never_heard_of_baseball(X).

Negation and Prolog

• Can’t have:
– baseball_fan(mary).
– \+ baseball_fan(john).

• 2nd fact is by default true given the Closed
World Assumption with database:
– baseball_fan(mary).

• Also can’t have:
– baseball_fan(john).
– \+ baseball_fan(john).

Negation and Prolog
• Also, technically:

– football_fan(mary).
is false given the same Closed World Assumption.

• Prolog assumes unknown predicate/arguments are
errors
– Well, actually, Prolog calls them “errors”
– Example:

• ?- a(X).
• ERROR: Undefined procedure: a/1

• To change Prolog’s behavior to the pure Closed
World Assumption behavior for predicate a/1:
– ?- dynamic a/1.

Exercise 4
(4pts) Extra Credit
• From Quiz 1:

– 3. Given the statement “All crows are black”, give an example of a
sentence expressing a tautology involving this statement?

• Possible answer:
– All crows are black or not all crows are black

• Let Prolog predicate p/0 denote the proposition “All crows are
black”
– ?- assert(p). “All crows are black is true in this world”

• Construct the Prolog version of the tautology
• Show that it is true no matter what the scenario
• Construct a contradictory statement involving p
• Show that it is false not matter what the scenario

Homework Summary

• Homework 1
– 15 points on offer
– 4 points extra credit

– (cf. Quiz 1: 3 pts)

