LING 364: Introduction to Formal Semantics

Lecture 28 May 2nd

Administrivia

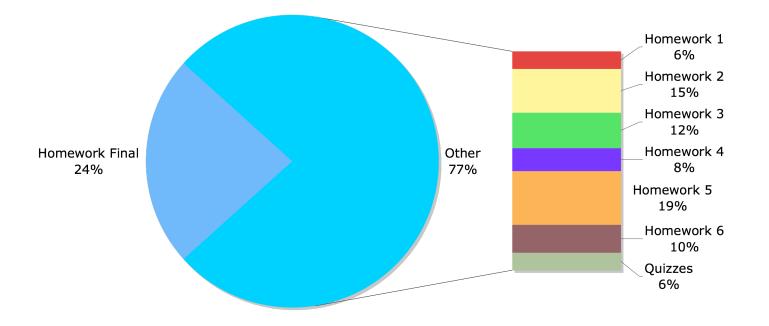
• Homework 6

– was due at the beginning of class

Administrivia

Today's Agenda:

- A Note on Grading and Course Objectives
- Homework 6 Review
- Homework Final
- Class Evaluations


Back at the Beginning

- [Lecture 1: Slide 13]
- Mix of homeworks and short quizzes
 - expect approx. 6
 homework assignments
 - longer and more in-depth in nature
 - worth many more points
 - a short quiz (just about) every week
 - gauge your understanding

- Grading
 - In total, homeworks will generally be worth much more than the short quizzes
 - about a 75-70% / 25-30% ratio
 - There may or may not be a final exam
 - depends on how the class is doing
 - (if so) view it as an opportunity to improve your score
 - if given, it will be a takehome exam worth about 25% of the grade due by midnight the next day

Grading

Points-wise

Course objectives were...

- Two goals:
 - (1) on the theoretical side
 - Understand what is meant by **natural language semantics**
 - what does it mean to work out the "meaning" of a sentence, phrase or utterance
 - what quasi-technical terms like entailment, possible worlds, truth conditions, quantification, scope ambiguity, synonymy, presupposition, logical deduction, reference, inference rule etc. mean
 - the relation between natural language and formal logic
 - the relation between syntax and semantics with respect to formal grammars
 - awareness of issues and data
 - *etc...*

Course objectives were...

- Two goals:
 - (2) on the practical side
 - gain experience with **formal systems** and build something tangible
 - first-hand experience on how to write logic expressions
 - practice how to formalize notions
 - how to run logical deduction on computers
 - use and write grammars for semantics
 - we'll use SWI-Prolog
 - by the end of this course you will be able to write formal grammars integrating the computation of **meaning** as well as **syntax** for fragments of English

Nature of the Course

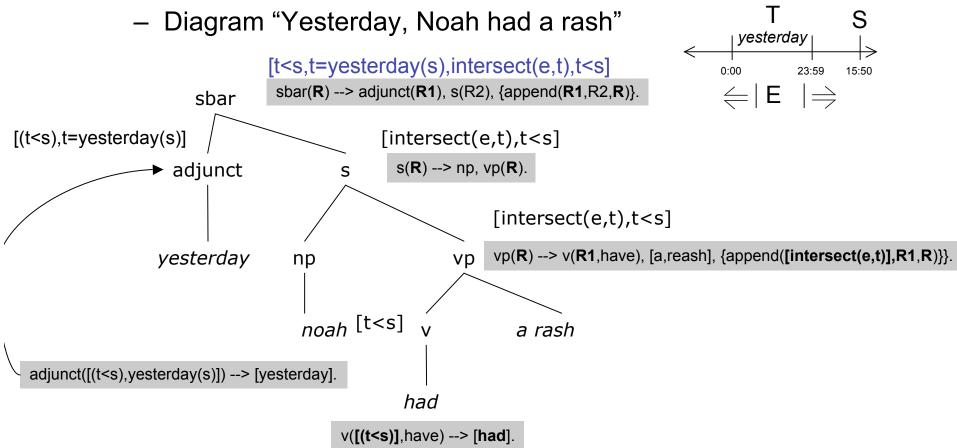
Formalization of natural language

– involves...

- being mathematical
- being used to thinking precisely with respect to manipulating formalisms
- being comfortable with logic (lambda-calculus)
- learning to write logic that runs on a computer (otherwise course would be mostly theoretical

Each of these can be challenging first time around

A simple grammar for tense and time


- sbar(R) --> adjunct(R1), s(R2), {append(R1,R2,R)}.
- sbar(R) --> s(R).
- s(R) --> np, vp(R).
- np --> [i].
- np --> [noah].
- vp(R) --> v(R1,go), [for,a,hike], {append([(subset(e,t))],R1,R)}.
- vp(R) --> v(R1,have), [a,rash], {append([intersect(e,t)],R1,R)}.
- v([(t<s)],go) --> [went].
- v([(t=s)],go) --> [go].
- v([(s<t)],go) --> [will,go].
- v([(t<s)],have) --> [had].
- v([(t=s)],have) --> [have].
- v([(s<t)],have) --> [will,have].

- adjunct([(t<s),t=last_month(s)]) --> [last,month].
- adjunct([(t<s),t=yesterday(s)]) --> [yesterday].
- adjunct([(s=t),t=today(s)]) --> [today].
- adjunct([(s<t),t=tomorrow(s)]) --> [tomorro
- infer(R,[(Z<Y)]) :
 - select((X<Y),R,R1),
- select(subset(Z,X),R1,_).
- % select(X,L,L')
- % selects X a member of list L,
- % L' is the list L with X removed
- select(X,[X|L],L).
- select(X,[Y|L],[Y|Lp]) :- select(X,L,Lp).

Exercise 1: • – Tomorrow, I will go for a hike infer(R,[(X<Z)]) :select((X<Y),R,R1), select(subset(Z,Y),R1,_). Run: • - ?- sbar(X,[tomorrow,i,will,go,for,a,hike],[]). lf - X = [s < t, t = tomorrow(s), subset(e, t), s < t] ?;s<t X < Y – no and - ?- sbar(X,[tomorrow,i,will,go,for,a,hike],[]), infer(X,Y). e⊆t $Z \subseteq \mathbf{Y}$ - X = [s < t, t = tomorrow(s), subset(e, t), s < t],we can infer: - Y = [s < e] ?;X < Z s<e - X = [s < t, t = tomorrow(s), subset(e, t), s < t],- Y = [s < e] ?;

– no

• Exercise 2:

- Exercise 3: Inconsistency
- Explain formally what is wrong with the following sentences:
 - (i) # Yesterday, I will go for a hike
 - (ii) # Tomorrow, Noah had a rash

```
?- sbar(X,[yesterday,i,will,go,for,a,hike],[]), inconsistent(X).
X = [t<s,t=yesterday(s),subset(e,t),s<t] ?;
X = [t<s,t=yesterday(s),subset(e,t),s<t] ?;
no
?- sbar(X,[tomorrow,noah,had,a,rash],[]), inconsistent(X).
X = [s<t,t=tomorrow(s),intersect(e,t),t<s] ?;
X = [s<t,t=tomorrow(s),intersect(e,t),t<s] ?;
no
select((X<Y),R,R1),
select((Y<X),R1, ).</pre>
```

Homework Final

Homework Final

Instructions

- 7 Questions
- Due tomorrow by midnight in my mailbox
 - deductions if you're late
 - zero points if you are a day late
- Answer as many questions as you can in the time available
- Attempt every question
- It's a second chance to show you understand the course material, homework reviews, etc.
 - Good luck!

Homework Final

Instructions

- Do not panic.
- Consult referenced homework slides
- Consult homework reviews
 - **All** questions on this homework final can be answered with the knowledge in those lecture slides
- You may discuss the homework final
 - you must cite classmates or other sources

- [Homework 1: Lecture 3]
- Introduction to Prolog and Truth Conditions
 - Let database fact p represent the proposition "All dogs bark"
 - [4pts] Construct the Prolog statement for "it is not the case that both all dogs bark and not all dogs bark"
 - [4pts] Show that the translated (into Prolog) statement is a **tautology**.
 - (Submit your Prolog run.)

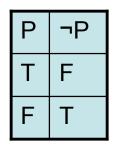
- [Homework 2: Lecture 8] Phrase Structure and Meaning Grammars
 - [8pts] Give a phrase structure grammar for the following sentences.
 - Why is John sad?
 - [_{CP} [_{Adv} why][_{Cbar} [_C is][[_{IP} [_{NP} John][_{VP} [_V *trace*][_{AP} [_{NP} *trace*][_{Abar} [_A sad]]]]]]
 - Why is John not sad?
 - [_{CP} [_{Adv} why][_{Cbar} [_C is][[_{IP} [_{NP} John][_{NegP} [_{Neg} not][[_{VP} [_V trace][_{AP} [_{NP} trace][_{Abar} [_A sad]]]]]]]
 - Why isn't John sad?
 - [_{CP} [_{Adv} why][_{Cbar} [_C isn't][[_{IP} [_{NP} John][_{NegP} [_{Neg} trace][[_{VP} [_V trace][_{AP} [_{NP} trace][_{Abar} [_A sad]]]]]]]
- [Follow the bracketing given *exactly*. Treat *trace* as if it was a real word. Treat *isn't* as a single word in Prolog: 'isn\'t'.]

• [Homework 2: Lecture 8]

Phrase Structure and Meaning Grammars

- [3pts] Show your grammar works.
- Why is John sad?
 - ?- cp(PS,[why,is,john,trace,trace,sad],[]).
- Why is John not sad?
 - ?- cp(PS,[why,is,john,not,trace,trace,sad],[]).
- Why isn't John sad?
 - ?- cp(PS,[why,'isn\'t',john,trace,trace,trace,sad],[]).
- (Submit your runs.)

• [Homework 2: Lecture 8]


• Phrase Structure and Meaning Grammars

- [6pts] Modify your rules involving trace to allow empty categories as follows:
 - Old rule: x(x(trace)) --> [trace].
 - **New rule:** x(x(trace)) --> [].
- Show your new rules work.
- How many parses for each of the following queries?
- Why is John sad?
 - ?- cp(PS,[why,is,john,sad],[]).
- Why is John not sad?
 - ?- cp(PS,[why,is,john,not,sad],[]).
- Why isn't John sad?
 - ?- cp(PS,[why,'isn\'ť,john,sad],[]).
- (Submit your runs.)

- [Homework 3: Lecture 13]
- Phrase Structure and Meaning Grammars Contd.
- [8pts] Give a meaning grammar for sentence/meaning pairs:
 - dog(shelby). Shelby is a dog
 - (white(shelby),dog(shelby)). Shelby is a white dog
 - [Assume *white* is an **intersective adjective**.]
- [6pts] Evaluate your generated meanings against the Prolog versions of the following possible worlds:
 - (A) Shelby is a dog and Shelby is white
 - (B) Shelby is a dog and Shelby is brown
- (Submit your runs and possible worlds.)

- [Homework 4: Lecture 18] **Plural and Mass Terms.**
- Assume the **lattice-style definition** for the plural *dogs*:
 - :- dynamic dog/1.
 - dogs(Plural) :- findall(X,dog(X),L), plural(L,Plural).
 - plural(L,X+Y) :- selectone(X,L,L1), selectone(Y,L1,_).
 - plural(L,X+PL) :- selectone(X,L,L1), plural(L1,PL).
 - selectone(X,[X|L],L).
 - selectone(X,[Y|L],L2) :- selectone(X,L,L2).
- [4pts] Give a Prolog query for "two dogs"
- [4pts] Give a Prolog query for "*two or more dogs*"
- [4pts] Give a Prolog query for "not more than two dogs"

- [Homework 5: Lecture 22]
- Truth Tables and Quantification.
- Assume the Prolog definitions given in HW 5 for logical implication (⇒) and negation (¬)
- [8pts] Are $P \Rightarrow Q$ and $\neg Q \Rightarrow \neg P$ equivalent?
- Prove your answer using Prolog truth tables
- (Submit your Prolog query and run.)

Ρ	⋔	Q
Т	Т	Т
F	Т	Т
F	Т	F
Т	F	F

- [Homework 5: Lecture 22]
- Truth Tables and Quantification.
- Define |S| to be the size of set S
 - examples:
 - |{a,b}| = 2
 - $|\{a,b,c\}| / 2 > |\{a\}|$
- [10pts] Give the set-theoretic, i.e. Generalized Quantifierbased, semantics for the sentences:
 - Most men smoke
 - Most smokers are men
- (You may use set notation or Prolog notation.)
- (There is no need to run a Prolog query.)

- [Homework 6: Lecture 27]
- Tense and Aspect.
- [8pts] Give the relations between S, E, T for the sentences:
 - John had left yesterday
 - John has left
- [3pts] According to the theory, what is semantically odd about?
 - # John has left yesterday

Summary

- Total: 82 pts
 - Q1: 8pts
 - Q2: 19pts
 - Q3: 14pts
 - Q4: 12pts
 - Q5: 8pts
 - Q6: 10pts
 - Q7: 11pts