
LING 364: Introduction to
Formal Semantics

Lecture 27
April 27th

Administrivia

• Homework 5
– all returned

• if you didn’t get an email from me,
• I didn’t get your homework

Administrivia

• Homework 6
– short homework on time and tense
– out today
– due to proximity to the end of the semester and

the final
– due next Tuesday

Homework 6 help: come to my office

Availability
tomorrow (Friday) (whole afternoon)
Monday(whole afternoon)
Tuesday (last lecture)

Administrivia

• Final
– a take-home
– out next Tuesday
– you have one day+
– due that Wednesday

• I will be available all day Wednesday for questions
• (Douglass 308)

Time and Tense

• Recap of formal concepts:
• (S) utterance or speech time
• (E) event time
• (T) reference (R) or topic time

– time intervals
• the notion that E,S and T are intervals

– interval relations:
• precedence (<)
• inclusion (

A Grammar for Tense and Time
• sbar(R) --> adjunct(R1), s(R2), {append(R1,R2,R)}.
• sbar(R) --> s(R).

• s(R) --> np, vp(R).
• np --> [i].
• np --> [noah].
• vp(R) --> v(R1,go), [for,a,hike], {append([(subset(e,t))],R1,R)}.
• vp(R) --> v(R1,have), [a,rash], {append([intersect(e,t)],R1,R)}.

• v([(t<s)],go) --> [went].
• v([(t=s)],go) --> [go].
• v([(s<t)],go) --> [will,go].

• v([(t<s)],have) --> [had].
• v([(t=s)],have) --> [have].
• v([(s<t)],have) --> [will,have].

• adjunct([(t<s),t=last_month(s)]) --> [last,month].
• adjunct([(t<s),t=yesterday(s)]) --> [yesterday].
• adjunct([(s=t),t=today(s)]) --> [today].
• adjunct([(s<t),t=tomorrow(s)]) --> [tomorrow].

simple grammar we will use for
the homework

a more elaborate grammar would
integrate, i.e. include,
the meaning grammars
that we’ve been developing in
other homework

Exercise 1

• Let’s see what this grammar
computes

• Run
– (16) Last month, I went for a hike

• as follows
– ?- sbar(R,[last,month,i,went,for,a,hike],[]).
– R = [t<s,t=last_month(s),subset(e,t),t<s]

S
last month

3/1 3/31 4/20

T

E

Exercise 1
• Explaining the output

– ?- sbar(R,[last,month,i,went,for,a,hike],[]).
– R = [t<s,t=last_month(s),subset(e,t),t<s]
– Each part of the sentence that has something to say about

time/tense contributes some part of the result
– each part, e.g. R, R1, R2, is stored as a Prolog list

Relevant Grammar Rules
•sbar(R) --> adjunct(R1), s(R2), {append(R1,R2,R)}.

•remember: append/3 concatenates lists R1 and R2 to make R
–let’s look at R1 which comes from the rule for adjunct

•adjunct([(t<s),t=last_month(s)]) --> [last,month].
•R1 = [(t<s),t=last_month(s)]
•list containing two facts
•t < s (reference time T precedes utterance time S)
•t = last_month(s)

Exercise 1
• Explaining the output

– ?- sbar(R,[last,month,i,went,for,a,hike],[]).
– R = [t<s,t=last_month(s),subset(e,t),t<s]

Relevant Grammar Rules
•sbar(R) --> adjunct(R1), s(R2), {append(R1,R2,R)}.

–let’s look at the 2nd half of the result
–R2 comes from the rule for S

•s(R) --> np, vp(R).
•np --> [i].
•vp(R) --> v(R1,go), [for,a,hike], {append([subset(e,t)],R1,R)}.

–subset(e,t) encodes E
–aspectual information: “go for a hike” is an accomplishment, and
–happens in the reference time interval

•v([(t<s)],go) --> [went].
•v([(s<t)],go) --> [will,go].

–R1 = [(t<s)]
–t<s encodes past tense, i.e. T < S

Exercise 1
• In diagram form:

sbar

adjunct s

np vp

v for a hikei

went

last month

v([(t<s)],go) --> [went].

vp(R) --> v(R1,go), [for,a,hike], {append([subset(e,t)],R1,R)}}.

[t<s]

[subset(e,t),t<s]

[subset(e,t),t<s]

s(R) --> np, vp(R).

adjunct([(t<s),t=last_month(s)]) --> [last,month].

[(t<s),t=last_month(s)]

sbar(R) --> adjunct(R1), s(R2), {append(R1,R2,R)}.
[t<s,t=last_month(s),subset(e,t),t<s]

Exercise 1
• An inference rule

– infer(R,[(Z<Y)]) :-
– select((X<Y),R,R1),
– select(subset(Z,X),R1,_).

– % select(X,L,L’)
– % selects X a member of list L,
– % L’ is the list L with X removed
– select(X,[X|L],L).
– select(X,[Y|L],[Y|Lp]) :-

select(X,L,Lp).

• Encodes:
– If
– X < Y
– and
– Z X
– we can infer:
– Z < Y

• over the list of
relations given in R

Exercise 1
• Running

– ?- sbar(R,[last,month,i,went,for,a,hike],[]).
– R = [t<s,t=last_month(s),subset(e,t),t<s]

• What should I be able to infer?
– Answer: E < S

• Let’s use our inference rule!
– ?- sbar(R,[last,month,i,went,for,a,hike],[]), infer(R,R1).
– R = [t<s,t=last_month(s),subset(e,t),t<s],
– R1 = [e<s]

Exercise 1

• Homework Question A (2pts)
– Run

• Tomorrow, I will go for a hike

– Give the result
• Homework Question B (2pts)

– What should I be able to infer?
• Homework Question C (4pts)

– Add an inference rule to do this

Exercise 2

• Consider now
– Yesterday, Noah had a rash

• Let
– T = yesterday(S)
– E = interval in which Noah is in a state of

having a rash
– T < S
– E T ∅

S
yesterday

0:00 23:59 15:50

T

E
E
E

?- sbar(R,[yesterday,noah,had,a,rash],[]).
R = [t<s,t=yesterday(s),intersect(e,t),t<s]

notation: define intersect(e,t) to mean E intersects T is non-empty

E T

Exercise 2

• Homework Question (8pts)
– Give a diagram explanation (see slide 10)

of how
– R = [t<s,t=yesterday(s),intersect(e,t),t<s]

– is computed piece-by-piece
– for the query
– ?- sbar(R,[yesterday,noah,had,a,rash],[]).

Exercise 3

• Theme: Inconsistency
• Homework Question (8pts)
• Explain formally what is wrong with the

following sentences:
– (i) # Yesterday, I will go for a hike
– (ii) # Tomorrow, Noah had a rash

– # = semantically odd
• hint: Run the sentences...

Exercise 3
• Extra Credit (10pts)
• Write a Prolog rule

– inconsistent(R)
– that succeeds when it detects a logical inconsistency in the list of

relations R
– your rule should detect the inconsistency in sentences (i) and (ii)
– hint: it’s only one rule

 ?- sbar(R,[yesterday, i,will,go,for,a,hike],[]), inconsistent(R).
R = [t<s,t=yesterday(s),subset(e,t),s<t]
yes
| ?- sbar(R,[yesterday, i,will,go,for,a,hike],[]), \+ inconsistent(R).
no

