LING 364: Introduction to Formal Semantics

Lecture 23
April 11th

Administrivia

- Homework 4
- graded
- you should get it back today

Administrivia

- this Thursday
- computer lab class
- help with homework 5
- meet in SS 224

Today's Topics

- Homework 4 Review
- Finish with
- Chapter 6: Quantifiers
- Quiz 5 (end of class)

Homework 4 Review

- Questions 1 and 2
- Worlds
- w1 $\rightarrow\{A, B\}$
- w2 $\rightarrow\{B, C\}$
- w3 $\rightarrow\{A, B, C\}$
- w4 $\rightarrow \varnothing$
- or
- or
- w5 $\rightarrow\{A, B, C, D, E\}$
- w6 $\rightarrow\{A, B, C, D, E, F\}$
horse(a). horse(b).
horse(b). horse(c).
horse(a). horse(b). horse(c).
:- dynamic horse/1.
?- assert(horse(a)), retract(horse(a)).
?- set_prolog_flag(unknown,fail).
horse(a). horse(b). horse(c). horse(d).
horse(e).
horse(a). horse(b). horse(c). horse(d).
horse(e). horse(f).

Homework 4 Review

- Prolog definitions common to worlds $\mathrm{W}_{1}, . ., \mathrm{W}_{6}$:

```
- horses(Sum) :-
- findall(X,horse(X),L),
- sum(L,Sum).
- sum(L,X+Y) :- pick(X,L,Lp), pick(Y,Lp,_).
- sum(L,X+Sum) :- pick(X,L,Lp), sum(Lp,Sum).
- pick(X,[X|L],L).
- pick(X,[|LL],Lp) :- pick(X,L,Lp).
```


Homework 4 Review

- Questions 1 and 2
- Answers to the query
- ?- findall(PL,horses(PL),L), length(L,N).
- $w 1 \rightarrow\{A, B\}$
$\mathrm{L}=[\mathrm{a}+\mathrm{b}]$
$\mathrm{N}=1$
$-w 2 \rightarrow\{B, C\}$
- w3 $\rightarrow\{A, B, C\}$
- $w 4 \rightarrow \varnothing$
- w5 $\rightarrow\{A, B, C, D, E\}$
- total: 26

The number of combinations is as follows, where number $=\mathrm{n}$ and number_chosen $=\mathrm{k}$:
$\binom{n}{k}=\frac{P_{k, n}}{k!}=\frac{n!}{k!(n-k)!}$
${ }^{\text {where: }}=\frac{n!}{(n-k)!}$

- 2 horses $={ }_{5} \mathrm{C}_{2}=5!/(2!3!)=10$
-3 horses $={ }_{5} \mathrm{C}_{3}=5!/(3!2!)=10$
$L=[b+c] \quad N=1$
$L=[a+b, a+c, b+c, a+(b+c) \quad N=4$
$L=[] \quad N=0$
$L=[a+b, a+c, a+d, a+e, b+c, b+d, b+e, c+d, c+e, d+e$, $a+(b+c), a+(b+d), a+(b+e), a+(c+d), a+(c+e), a+(d+e)$,
$a+(b+(c+d)), a+(b+(c+e)), a+(b+(d+e))$,
$a+(b+(c+(d+e))), a+(c+(d+e)), b+(c+d)$,
$b+(c+e), b+(d+e), b+(c+(d+e)), c+(d+e)]$

4 horses $={ }_{5} \mathrm{C}_{4}=5!/(4!1!)=5$
5 horses $=1$

Homework 4 Review

- Questions 1 and 2
- Answers to the query
- ?- findall(PL,horses(PL),L), length(L,N).
$-\quad w 6 \rightarrow\{A, B, C, D, E, F\}$
- $\quad L=[a+b, a+c, a+d, a+e, a+f, b+c, b+d, b+e, b+f, c+d, c+e, c+f, d+e, d+f, e+f$,
$-\quad a+(b+c), a+(b+d), a+(b+e), a+(b+f), a+(c+d), a+(c+e), a+(c+f), a+(d+e), a+(d+f), a+(e+f)$,
$-\quad a+(b+(c+d)), a+(b+(c+e)), a+(b+(c+f)), a+(b+(d+e)), a+(b+(d+f)), a+(b+(e+f))$,
- $\quad a+(b+(c+(d+e))), a+(b+(c+(d+f))), a+(b+(c+(e+f)))$,
- $\quad a+(b+(c+(d+(e+f))))$,
- $\quad a+(b+(d+(e+f)))$,
- $\quad \mathrm{a}+(\mathrm{c}+(\mathrm{d}+\mathrm{e})), \mathrm{a}+(\mathrm{c}+(\mathrm{d}+\mathrm{f})), \mathrm{a}+(\mathrm{c}+(\mathrm{e}+\mathrm{f}))$,
- $\quad a+(c+(d+(e+f)))$,
- $\quad a+(d+(e+f))$,
$-\quad b+(c+d), b+(c+e), b+(c+f), b+(d+e), b+(d+f), b+(e+f)$,
- $\quad b+(c+(d+e)), b+(c+(d+f)), b+(c+(e+f))$,
- $\quad b+(c+(d+(e+f)))$,
- b+(d+(e+f)),
$-\quad c+(d+e), c+(d+f), c+(e+f), c+(d+(e+f)), d+(e+f)]$

2 horses $={ }_{6} \mathrm{C}_{2}=6!/(2!4!)=15$
3 horses $={ }_{6} \mathrm{C}_{3}=6!/(3!3!)=20$
4 horses $={ }_{6} \mathrm{C}_{4}=6!/(4!2!)=15$
5 horses $={ }_{6} \mathrm{C}_{5}=6!/(5!1!)=6$
6 horses $={ }_{6} \mathrm{C}_{1}=1$
Total: 57

Homework 4 Review

Homework 4 Review

- Question 3:
- What is the Prolog query for "three horses"?
- Answer
- Notice all cases of threes are of pattern/form _+(_+_) where each _ represents an individual horse
- e.g. $a+(b+c), a+(b+d), a+(b+e), a+(c+d), a+(c+e), a+(d+e)$
- Query (1st attempt)
- ?- findall(PL,(horses(PL),PL=_+(_+_)),L).
- Example (W_{5})
- $\mathrm{L}=[\mathrm{a}+(\mathrm{b}+\mathrm{c}), \mathrm{a}+(\mathrm{b}+\mathrm{d}), \mathrm{a}+(\mathrm{b}+\mathrm{e}), \mathrm{a}+(\mathrm{c}+\mathrm{d}), \mathrm{a}+(\mathrm{c}+\mathrm{e}), \mathrm{a}+(\mathrm{d}+\mathrm{e}), \mathrm{a}+(\mathrm{b}+(\mathrm{c}+$ d) $), a+(b+(c+e)), a+(b+(d+e)), a+(b+(c+(d+e))), a+(c+(d+e)), b+(c+$ d), $b+(c+e), b+(d+e), b+(c+(d+e)), c+(d+e)]$
- Total: 16 (but answer should be 10!)

Homework 4 Review

- Question 3:
- What is the Prolog query for "three horses"?
- Answer
- Query (2nd attempt)
- ?- findall(PL,(horses(PL), PL=_+(_+H), $\left.\left.\backslash+\mathrm{H}={ }_{-}+{ }_{-}\right), \mathrm{L}\right)$, length(L,N).
- Example (W_{5})
- $L=[a+(b+c), a+(b+d), a+(b+e), a+(c+d), a+(c+e), a+(d+e), b+(c+d)$, b+(c+e), $b+(d+e), c+(d+e)]$
- $\mathrm{N}=10$ (correct)

Homework 4 Review

- Question 3:
- What is the Prolog query for "three horses"?
- Another way to deal with the question:
- recognize that notation Horse+Sum from the given definition:
- $\quad \operatorname{sum}(L, X+Y):-\operatorname{pick}(X, L, L p), \operatorname{pick}\left(Y, L p, __{2}\right)$.
- $\operatorname{sum}(L, X+S u m):-\operatorname{pick}(X, L, L p)$, sum(Lp,Sum).
- is isomorphic to [Head|Tail] list notation (here: + is equivalent to |)
- Write a recursive length predicate, call it len/2, for Horse+Sum
- len(_+Sum,N) :- !, len(Sum,M), N is $\mathrm{M}+1$.
- len(_,1).
- Query becomes:
- ?- findall(PL,(horses(PL),len(PL,3)),L).

Homework 4 Review

- Question 4:
- How would you write the query for "the three horses"?
- Clue (given in lecture slides)
- ?- findall(X,dog(X),List), length(List,1).
- encodes the definite description "the dog"
- i.e. query holds (i.e. is true) when $\operatorname{dog}(X)$ is true and there is a unique X in a given world
- Combine this clue with the answer to Question 3
- Resulting Query
- ?- findall(PL,(horses(PL), PL=_+(_+H),l+H=_+_),L), length(L,1).
- Under the assumption that everything is equally salient, query is true for world W_{3} only!
$-\quad L=[a+(b+c)]$
- Worlds W_{1}, W_{2} and W_{4} have too few horses, and worlds W_{5} and W_{6} have too many.

Back to Chapter 6

Negative Polarity Items

- Negative Polarity Items (NPIs)
- Examples:
- ever, any
- Constrained distribution:
- have to be licensed in some way
- grammatical in a
"negated environment" or "question"
- Examples:
- (13a) Shelby won't ever bite you
- (13b) Nobody has any money
- (14a) *Shelby will ever bite you
- (14b) *Noah has any money
- *= ungrammatical
- (15a) Does Shelby ever bite?
- (15b) Does Noah have any money?

Negative Polarity Items

- Inside an if-clause:
- (16a) If Shelby ever bites you, I'll put him up for adoption
- (16b) If Noah has any money, he can buy some candy
- Inside an every-NP:
- (17a) Every dog which has ever bitten a cat feels the admiration of other dogs
- (17b) Every child who has any money is likely to waste it on candy
- Not inside a some-NP:
- (17a) Some dog which has ever bitten a cat feels the admiration of other dogs
- (17b) Some child who has any money is likely to waste it on candy

Not to be confused with free choice (FC) any (meaning: \forall): any man can do that

Downwards and Upwards Entailment (DE \& UE)

- class \rightleftarrows super-class
- Example:
- hyponym \quad hypernym
- dog $\quad \rightleftarrows \quad$ animal
- Keeshond $\rightleftarrows \quad$ dog
- Inferencing:
- non-negative sentence: upwards

- (23) I have a dog (entails)
- (23b) I have an animal

I have a Keeshond (invalid inference)

- negative sentence: downwards
- (24a)I don't have a dog
(entails)
- (24b) I don't have a Keeshond
- I don't have an animal (invalid inference)

Downwards and Upwards Entailment (DE \& UE)

- Quantifier every has semantics
- $\left\{\mathrm{X}: \mathrm{P}_{1}(\mathrm{X})\right\} \subseteq\left\{\mathrm{Y}: \mathrm{P}_{2}(\mathrm{Y})\right\}$
- e.g. every woman likes ice cream
- $\{\mathrm{X}:$ woman $(\mathrm{X})\} \subseteq\{\mathrm{Y}:$ likes $(\mathrm{Y}$,ice_cream) $\}$
- Every is DE for P_{1} and UE for P_{2}
- Examples:
- (25) a. Every dog barks
- b. Every Keeshond barks (valid)
- c. Every animal barks (invalid)
- semantically, "Keeshond" is a sub-property or subset with respect to the set "dog"

Downwards and Upwards Entailment (DE \& UE)

- Quantifier every has semantics
- $\left\{\mathrm{X}: \mathrm{P}_{1}(\mathrm{X})\right\} \subseteq\left\{\mathrm{Y}: \mathrm{P}_{2}(\mathrm{Y})\right\}$
- e.g. every woman likes ice cream
- $\{\mathrm{X}:$ woman $(\mathrm{X})\} \subseteq\{\mathrm{Y}:$ likes(Y,ice_cream) $\}$
- Every is DE for P_{1} and UE for P_{2}
- Examples:
- (25) a. Every dog barks

- d. Every dog barks loudly (invalid)
- c. Every dog makes noise (valid)
- semantically, "barks loudly" is a subset with respect to the set "barks", which (in turn) is a subset of the set "makes noise"

Downwards and Upwards Entailment (DE \& UE)

- Inferencing:
- non-negative sentence: UE
- (23) I have a dog (entails)
- (23b) I have an animal
- I have a Keeshond (invalid)
- negative sentence: DE
- (24a) I don't have a dog (entails)
- (24b) I don't have a Keeshond
- I don't have an animal (invalid)
- NPI-Licensing:
- non-negative sentence: UE
- (14a) *Shelby will ever bite you
- (14b) *Noah has any money
- negative sentence: DE
- (13a) Shelby won't ever bite you
- (13b) Nobody has any money

Generalization:
NPIs like ever and any are licensed by DE

Downwards and Upwards Entailment (DE \& UE)

- Inside an every-NP:
- (17a) [Every [dog][which has ever bitten a cat]] feels the admiration of other dogs
- (17b) [Every [child][who has any money]] is likely to waste it on candy
- Explanation:
- every is DE for P_{1} and UE for P_{2}
$-\left\{\mathrm{X}: \mathrm{P}_{1}(\mathrm{X})\right\} \subseteq\left\{\mathrm{Y}: \mathrm{P}_{2}(\mathrm{Y})\right\}$
- Inside an every-NP:
- (17a) $\mathrm{P}_{1}=$ [dog][which has ever bitten a cat]
- (17b) $\mathrm{P}_{1}=$ [child][who has any money

Generalization:
NPIs like ever and any are licensed by DE

Quiz 5

- Question 1: Is Some UE or DE for P_{1} and P_{2} ?
- Lecture 22 (Homework 5 Question 3)
- some: $\left\{\mathrm{X}: \mathrm{P}_{1}(\mathrm{X})\right\} \cap\left\{\mathrm{Y}: \mathrm{P}_{2}(\mathrm{Y})\right\} \neq \varnothing$
- Justify your answer using examples of valid/invalid inferences starting from
- Some dog barks
- Question 2: Is No UE or DE for P_{1} and P_{2} ?
- Lecture 22 (Homework 5 Question 3)
- no: $\left\{\mathrm{X}: \mathrm{P}_{1}(\mathrm{X})\right\} \cap\left\{\mathrm{Y}: \mathrm{P}_{2}(\mathrm{Y})\right\}=\varnothing$
- Use
- No dog barks

