LING 364: Introduction to
Formal Semantics

Lecture 21
April 4th



Administrivia

* Homework 3
— graded and returned

— homework 4 should be coming back this
week as well



Administrivia

* this Thursday
— computer lab class

— fun with quantifiers... homework 5
— meet in SS 224



Today's Topic

« Continue with
— Reading Chapter 6: Quantifiers
— Quiz 5 (end of class: postponeq)



Last Time

Quantified NPs: (6) every exactly | most
— “somethin'g fo do with i.ndicating baby one babies
the quantity of something” baby
— every child, nobody
— two dogs, several animals cried v v
— most people jumped v
think of quantifiers as swam 4
“properties-of-properties”
every baby(P) is a proposition
P: property
every_baby(P) true for P=cried Generalized quantifiers
every baby(P) false for sets of sets

P=jumped and P=swam property = set



Last Time

Defining every_baby(P)?
(Montague-style)
every baby(P) is shorthand for

—  AP.[VX.[baby(X) -> P(X)]]

— V. for all (universal quantifier. logic symbol)

Example:
— every baby walks

— [y\p every baby] [, walks]
AP.[V X.[baby(X) -> P(X)]] (walks)
Vv X.[baby(X) ->walks(X)]

Prolog-style:
?-\+ (baby(X), \+ walks(X)). “it’s not true that there is a baby (X) who doesn’t walk”



Conversion to Prolog form

Show
— (¥ X.Jbaby(X) -> walks(X)]

is equivalent to (can be translated into):

— 2= \+ (baby(X) M+ walks(X)).

We’'re going to use the idea that

VvV X P(X)

is the same as

= 3 X 7P(X)

let’s call this the “no exception” idea

3= “there exists” (quantifier)

(implicitly: all Prolog variables
are existentially quantified variables)

need to
translate
this

a Prolog variable like X in this query
has the meaning:

“give me some value of X such that
baby(X) is true”

i.e. “give me some X"

ie. 3 X baby(X)




Aside: Truth Tables

logic of implication PlviQ E"tﬁ:PF O”JVQWhe”F
P -> Q = (truth value) NEE; oth Fand 1 are
T T T
£ T FIT|T
F F T o
T F FE FIFIE Plv |Q PP_\I{Q—ZanhI;when
i.e. if P is true, Q must be true in order =1 ana W=
for P->Q to be true T|IT|F TR T T
if P is false, doesn’t matter what Q is, FTITIT
P->Q is true
conventionally written as: FT |F |F
P> 1Q TF(T |T
T | T z
FIT |T | |
Hence, P->Q is equivalent to "PvQ
FIT |F
P->Q=F only when
TIF |F | P=Tand Q=F




 De Morgan’s Rule
=1PAQ

Aside: Truth Tables

« (PvQ)
=P [ A]-Q
FT | F |FT
TF [F [FT
TF | T | TF
FT | F |FT

Plv]|Q =2(PvQ)| ~(PvQ)=T only when
both P and Q are F

TIT|T F

FIT(T : F

FIF|F T

TIT|F F

“"PA~Q=T only when
both P and Q are F

Hence, 7(PvQ) is equivalent to -P/\"Q}




Conversion into Prolog

Note: \+ (baby(X), \+walks(X)) is Prolog for ¥V X (baby(X) -> walks(X))
Steps:
— VX (baby(X) -> walks(X))
— VX (7baby(X) v walks(X))
* (since P->Q = 7PvQ, see truth tables from two slides ago)
— =3 X = (baby(X) v walks(X))
* (since VX P(X)=~3X ~P(X), no exception idea from 3 slides ago)
— 23X (baby(X) A~walks(X))
* (by De Morgan’s rule, see truth table from last slide)
— 7(baby(X) Awalks(X))

» (can drop 3 X since all Prolog variables are basically existentially quantified
variables)

— \+ (baby(X) A \+walks(X))

* (\+ = Prolog negation symbol)
— \+ (baby(X), \+walks(X))

* (, = Prolog conjunction symbol)



Last Time

Defining every_baby(P)? - Imagine a possible world:
(Montague-style) AP.[V X.baby(X) -> P(X)]

— baby(a).
(Barwise & Cooper-style) — baby(b).
think directly in terms of sets bab
leads to another way of expressing the Prolog — Dba y(C)'
query — walks(a).
Example: every baby walks — walks(b).
{X: baby(X)} set of all X such that — walks(c).
baby(X) is true
{X: walks(X)}  set of all X such that — walks(d).

walks(X) is true

Subset relation (<) — {a,b,c} ={a,b,c,d}

{X: baby(X)} €{X: walks(X)} the “baby” set — baby < walks
must be a subset of the “walks” set



Subset and Prolog

How to express this as a Prolog query?

Findall/3 queries:
?- findall(X,baby(X),L1). L7 is the set of all babies in the database
?- findall(X,walks(X),L2). L2 is the set of all individuals who walk

Also need a Prolog definition of the subset relation. For example:

subset([], ). “empty set is a subset of anything”
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X]|_]).

member(X,[ |L]) :- member(X,L).

Prolog Head-Tail List Notation: programmatically:

[a,b,c] | | [ X | L1] will match [a,b,c]
a is the head of the list (the first element) when X = a, L1 = [b,c]
[b,c] is the tail of the list (all but the first element)

we can write a list as follows:

[head | tail]

[a|[b.c]]



Generalized Quantifiers

Example: every baby walks
{X: baby(X)} S{X: walks(X)} the “baby” set must be a subset of the “walks” set
Assume the following definitions are part of the database:
subset([],_).
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_1]).
member(X,[ _|L]) :- member(X,L).
Prolog Query:
?- findall(X,baby(X),L1), findall(X,walks(X),L2), subset(L1,L2).

* True for world:
— baby(a). baby(b).
— walks(a). walks(b). walks(c).

L1 =[a,b]
L2 = [a,b,C]
?- subset(L1,L2) is true

 False for world:
—  baby(a). baby(b). baby(d). L1 =[a,b,d]
— walks(a). walks(b).  walks(c). L2 = [a,b,c]
?- subset(L1,L2) is false



Generalized Quantifiers

Example: every baby walks
(Montague-style) Vv X (baby(X) -> walks(X))
(Barwise & Cooper-style) {X: baby(X)} & {X: walks(X)}

how do we define every baby(P)?
(Montague-style) AP.[V X (baby(X) -> P(X))]
(Barwise & Cooper-style) {X: baby(X)} € {X: P(X)}

how do we define every?
(Montague-style) AP .[AP,.[V X (P,(X) -> P,(X))]]
(Barwise & Cooper-style) {X: P,(X)} € {X: P,(X)}



Quantifiers

how do we define the expression every?
(Montague-style) AP .[AP,.[V X (P,(X) -> P,(X))]]

Let’s look at computation in the lambda calculus...
Example: every man likes John

— Word Expression

— every AP [AP,.[V X (P4(X) -> P,(X))]]
— man man

— likes AY.[AX.[ X likes Y]]

— John John

Syntax: [5 [\p [ everylly man]llyp [y likes][yp John]]]



Quantifiers

Example: [5 [\p [q €Verylly man]][yp [y likes][yp John]]]

— Word Expression

— every AP .[AP,.[V X (P, (X) -> P,(X))]]

— man man

— likes AY [AX.[ X likes Y]]

— John John

Steps:

[ everylly man]] AP1IAP,.[V X (P4(X) -> P,(X))]}(man)
[ everylly man]] AP,.[V X (man(X) -> P,(X))]

[ve [y likes][yp John]] AY.[AX.[ X likes Y]](John)

[ve [y likes][yp John]] AX.[ X likes John]

[s [np [q €verylly man]]lyp [y likes][yp John]]]
AP,.[V X (man(X) -> P,(X))JAX.[ X likes John])

VvV X (man(X) -> AX.[ X likes John](X))



Quantifiers

« Example: [ [\p [q every][y man]][yp [y likes][yp John]]]

— Word Expression t -

_ extra parentheses
every \+ (P(1X,)\+ P2). needed here

— man man(X).

— likes likes(X,Y). I've cheated a bit here...

this X is the same X as the X in man(X)...
in a program | would have to also saturate both
to the same variable

— John john

« Steps (Prolog-style):

[ every][y man] ?7-Q=(\+ )), N=man(X), arg(1,E,C), saturate1(C,N).
[\p [q €verylly man]]] NP =\+ (man(X)/\+ P2).

(pass up saturated Q as the value for the NP)
[, likes][yp JOhnN] ?7-V = likes(X,Y), NP=john, saturate2(V,NP).
[ve [y likes][yp John]] VP = likes(X,john).

(pass up satyrated V as the value for the VP)
[ve [q €verylly man]][ye [ likes][y, John]]
?- NP = (\+ (man(X), \+ P2)), VP = likes(X,john), arg(1,NP,C), arg(2,C,Neg),arg(1,Neg,VP).
[s [xp [ everylly man]llye [ likes]lye John]]

S =\+ (man(X),\+likes(X,john))

(pass up saturated NP as the value for S)



Quantifiers

« Example: ever man likes John
ple: [s [\p [ Ylln lve [v [N 11] Set theory version

— Word Expression
— every findall(U,P1,L1),findall(V,P2,L2),subset(L1,L2).
— man man(M).
— likes likes(A,B).
— John john
» Steps:

[ every][y man]] Q= (findall(U,P1,L1),findall(V,P2,L2),subset(L1,L2)), N = man(M),
arg(1,Q,FA1),arg(2,FA1,N), saturate1(FA1,X), saturate1(N,X).

[velo €verylly man]]] NP = findall(X,man(X),L1),findall(V,P2,L2),subset(L1,L2)
(pass up saturated Q as the value for the NP)

[, likes][yp JOhnN] V=likes(A,B), NP=john, saturate2(\V/,NP).

[ve [y likes][yp John]] VP = likes(A,john)

(pass up saturated V as the value for the VP)

[ve [q €verylly man]][ye [ likes][y, John]]
NP = (findall(X,man(X),L1),findall(V,P2,L2),subset(L1,L2)), VP = likes(A,john),
arg(2,NP,C2), arg(1,C2,FA2), arg(2,FA2,VP), saturate1(FA2,Y), saturate1(VP,2).



Quantifiers

« Example: [ [\p [q every][y man]][yp [y likes][yp John]]]

— Word Expression
— every findall(U,P1,L1),findall(V,P2,L2),subset(L1,L2).
— man man(M).
— likes likes(A,B).
— John john
» Steps:

[ve [q €verylly man]][ye [ likes][y, John]]

?- NP = (findall(X,man(X),L1),findall(V,P2,L2),subset(L1,L2)), VP =
likes(A,john), arg(2,NP,C2), arg(1,C2,FA2), arg(2,FA2,VP), saturate1(FAZ2,Y),
saturate1(VP,2).

[s [\e [ €Vverylly man]][ye [ likes][y, John]]]
S = findall(X,man(X),L1),findall(Y likes(Y,john),L2),subset(L1,L2)
(pass up saturated NP as the value for S)



Names as Generalized
Quantifiers

In earlier lectures, Example

we mentioned that every baby and John likes ice cream
names directly refer [nplnp €Very baby] and [p John]] likes ice cream
Here is another idea every baby likes ice cream
Conjunction {X: baby(X)} € {Y: likes(Y,ice_cream)}
— XandyY John likes ice cream
— both X'and Y have to ??? < {Y: likes(Y,ice_cream)}

be of the same type John € {Y: likes(Y,ice_cream)}

— Iin particular, . .
semantically... want everything to be a set (to be consistent)

— we want them to have i.e. want to state something like
:he same semantic ({X: baby(X)} U{X: john(X)}) € {Y: likes(Y,ice_cream)}
ype

_ _ note: set union (U) is the translation of “and”
what is the semantic

type of every baby?



Negative Polarity ltems

Negative Polarity + Examples:
Items (NPIs) — (13a) Shelby won't ever bite you
Examples: — (13b) Nobody has any money
— every, any
Constrained — (14a) *Shelby will ever bite you
distribution: — (14b) *Noah has any money
— have to be licensed in . .
some way — *= ungrammatical
— grammatical in a _
“negated environment” or — (153) Does Shelby ever bite?

“question” — (15b) Does Noah have any money?



Negative Polarity ltems

Inside an if-clause:

— (16a) If Shelby ever bites you, I'll put him up for adoption
— (16b) If Noah has any money, he can buy some candy
Inside an every-NP.

— (17a) Every dog which has ever bitten a cat feels the admiration of
other dogs

— (17b) Every child who has any money is likely to waste it on candy
Not inside a some-NP.

— (17a) Some dog which has ever bitten a cat feels the admiration of
other dogs

— (17b) Some child who has any money is likely to waste it on candy

Not to be confused with free choice (FC) any (meaning: V): any man can do that



