
LING 364: Introduction to
Formal Semantics

Lecture 21
April 4th



Administrivia

• Homework 3
– graded and returned
– homework 4 should be coming back this

week as well



Administrivia

• this Thursday
– computer lab class
– fun with quantifiers... homework 5
– meet in SS 224



Today’s Topic

• Continue with
– Reading Chapter 6: Quantifiers
– Quiz 5 (end of class: postponed)



swam
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cried

most
babies

exactly
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baby

every
baby

(6)

Last Time
• Quantified NPs:

– “something to do with indicating
the quantity of something”

– every child, nobody
– two dogs, several animals
– most people

• think of quantifiers as
“properties-of-properties”

• every_baby(P) is a proposition
• P: property
• every_baby(P) true for P=cried
• every_baby(P) false for

P=jumped and P=swam

Generalized quantifiers:
 sets of sets
property = set



Last Time
• Defining every_baby(P)?
• (Montague-style)
• every_baby(P) is shorthand for

– λP.[ .[baby(X) -> P(X)]]
–  for all (universal quantifier: logic symbol)

• Example:
– every baby walks
– [NP every baby] [VP walks]

• λP.[ .[baby(X) -> P(X)]] (walks)
• .[baby(X) ->walks(X)]

• Prolog-style:
• ?- \+ (baby(X), \+ walks(X)). “it’s not true that there is a baby (X) who doesn’t walk”



Conversion to Prolog form
• Show

– .[baby(X) -> walks(X)]
• is equivalent to (can be translated into):

– ?- \+ (baby(X), \+ walks(X)).

We’re going to use the idea that 
 P(X) 

is the same as 
¬ X ¬P(X)
let’s call this the “no exception” idea

 “there exists” (quantifier)
(implicitly: all Prolog variables
are existentially quantified variables)

need to
translate
this

a Prolog variable like X in this query
has the meaning:
 “give me some value of X such that
baby(X) is true”
i.e. “give me some X”

i.e. X baby(X)



Aside: Truth Tables
• logic of implication
• P -> Q = (truth value)
• T      T     T
• F      T     T
• F      F     T
• T      F     F
• i.e. if P is true, Q must be true in order

for P->Q to be true
• if P is false, doesn’t matter what Q is,

P->Q is true
• conventionally written as:

FFT

FTF

TTF

TTT

Q->P

FTT

FFF

TTF

TTT

QvP

TTTF

FFFT

TTFT

TTTF

Qv¬P

PvQ=F only when
both P and Q are F

¬PvQ=F only when
P=T and Q=F

P->Q=F only when
P=T and Q=F

Hence, P->Q is equivalent to ¬PvQ 



Aside: Truth Tables

• De Morgan’s Rule
• ¬(P Q) = ¬P ¬Q

FTT

FFF

TTF

TTT

QvP

F
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F
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¬(PvQ)

FTFFT

TFTTF

FTFTF

FTFFT

¬Q¬P

¬(PvQ)=T only when
both P and Q are F

¬P ¬Q=T only when
both P and Q are F

Hence, ¬(PvQ) is equivalent to ¬P ¬Q



Conversion into Prolog
Note: \+ (baby(X), \+walks(X)) is Prolog for  (baby(X) -> walks(X))
Steps:

–  (baby(X) -> walks(X))
–  (¬baby(X) v walks(X))

• (since P->Q = ¬PvQ, see truth tables from two slides ago)
– ¬  ¬ (¬baby(X) v walks(X))

• (since  P(X) = ¬  ¬P(X), no exception idea from 3 slides ago)
– ¬  (baby(X) ¬walks(X))

• (by De Morgan’s rule, see truth table from last slide)
– ¬(baby(X) ¬walks(X))

• (can drop  since all Prolog variables are basically existentially quantified
variables)

– \+ (baby(X) \+walks(X))
• (\+ = Prolog negation symbol)

– \+ (baby(X), \+walks(X))
• (, = Prolog conjunction symbol)



Last Time
• Defining every_baby(P)?
• (Montague-style) λP.[ .baby(X) -> P(X)]

• (Barwise & Cooper-style)
• think directly in terms of sets
• leads to another way of expressing the Prolog

query

• Example: every baby walks
• {X: baby(X)} set of all X such that

baby(X) is true
• {X: walks(X)} set of all X such that

walks(X) is true

• Subset relation (
• {X: baby(X)} {X: walks(X)}    the “baby” set

must be a subset of the “walks” set

• Imagine a possible world:
– baby(a).
– baby(b).
– baby(c).
– walks(a).
– walks(b).
– walks(c).
– walks(d).

– {a,b,c} {a,b,c,d}
– baby walks



Subset and Prolog

• How to express this as a Prolog query?
• Findall/3 queries:
• ?- findall(X,baby(X),L1). L1 is the set of all babies in the database
• ?- findall(X,walks(X),L2). L2 is the set of all individuals who walk

Also need a Prolog definition of the subset relation. For example:
subset([],_). “empty set is a subset of anything”
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_]).
member(X,[_|L]) :- member(X,L).

Prolog Head-Tail List Notation:
[a,b,c]
a is the head of the list (the first element)
[b,c] is the tail of the list (all but the first element)
we can write a list as follows:
[head | tail] 
[a | [b,c] ]

programmatically:
[ X | L1] will match [a,b,c]
when X = a, L1 = [b,c]



Generalized Quantifiers
• Example: every baby walks
• {X: baby(X)} {X: walks(X)}    the “baby” set must be a subset of the “walks” set
• Assume the following definitions are part of the database:

subset([],_).
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_ ]).
member(X,[ _|L]) :- member(X,L).

• Prolog Query:
• ?- findall(X,baby(X),L1), findall(X,walks(X),L2), subset(L1,L2).

• True for world:
– baby(a). baby(b).
– walks(a). walks(b).     walks(c).

L1 = [a,b]
L2 = [a,b,c]
?- subset(L1,L2) is true

• False for world:
– baby(a). baby(b).     baby(d).
– walks(a). walks(b).     walks(c).

L1 = [a,b,d]
L2 = [a,b,c]
?- subset(L1,L2) is false



Generalized Quantifiers
• Example: every baby walks
• (Montague-style)  (baby(X) -> walks(X))
• (Barwise & Cooper-style) {X: baby(X)} {X: walks(X)}

• how do we define every_baby(P)?
• (Montague-style) λP.[  (baby(X) -> P(X))]
• (Barwise & Cooper-style) {X: baby(X)} {X: P(X)}

• how do we define every?
• (Montague-style)  λP1.[λP2.[  (P1(X) -> P2(X))]]
• (Barwise & Cooper-style) {X: P1(X)} {X: P2(X)}



Quantifiers
• how do we define the expression every?
• (Montague-style)  λP1.[λP2.[  (P1(X) -> P2(X))]]

• Let’s look at computation in the lambda calculus...
• Example: every man likes John

– Word Expression
– every λP1.[λP2.[  (P1(X) -> P2(X))]]
– man man
– likes λY.[λX.[ X likes Y]]
– John John

• Syntax: [S [NP [Q every][N man]][VP [V likes][NP John]]]



Quantifiers
• Example: [S [NP [Q every][N man]][VP [V likes][NP John]]]

– Word Expression
– every λP1.[λP2.[  (P1(X) -> P2(X))]]
– man man
– likes λY.[λX.[ X likes Y]]
– John John

• Steps:
[Q every][N man]] λP1.[λP2.[  (P1(X) -> P2(X))]](man)
[Q every][N man]] λP2.[  (man(X) -> P2(X))]
[VP [V likes][NP John]] λY.[λX.[ X likes Y]](John)
[VP [V likes][NP John]] λX.[ X likes John]
[S [NP [Q every][N man]][VP [V likes][NP John]]]

 λP2.[  (man(X) -> P2(X))](λX.[ X likes John])
  (man(X) -> λX.[ X likes John](X))



Quantifiers
• Example: [S [NP [Q every][N man]][VP [V likes][NP John]]]

– Word Expression
– every \+ (P1, \+ P2).
– man man(X).
– likes likes(X,Y).
– John john

• Steps (Prolog-style):
[Q every][N man]  ?- Q = (\+ (P1,\+P2)), N= man(X), arg(1,E,C), saturate1(C,N).
[NP [Q every][N man]]] NP = \+ (man(X), \+ P2). 

 (pass up saturated Q as the value for the NP)
[V likes][NP John]  ?- V = likes(X,Y), NP=john, saturate2(V,NP).
[VP [V likes][NP John]] VP = likes(X,john).

 (pass up saturated V as the value for the VP)
[NP [Q every][N man]][VP [V likes][NP John]]

 ?- NP = (\+ (man(X), \+ P2)), VP = likes(X,john), arg(1,NP,C), arg(2,C,Neg),arg(1,Neg,VP).
  [S [NP [Q every][N man]][VP [V likes][NP John]]]
 S = \+ (man(X),\+likes(X,john))
 (pass up saturated NP as the value for S)

extra parentheses
needed here

I’ve cheated a bit here...
this X is the same X as the X in man(X)...
in a program I would have to also saturate both
to the same variable



Quantifiers
• Example: [S [NP [Q every][N man]][VP [V likes][NP John]]]

– Word Expression
– every findall(U,P1,L1),findall(V,P2,L2),subset(L1,L2).
– man man(M).
– likes likes(A,B).
– John john

• Steps:
[Q every][N man]] Q= (findall(U,P1,L1),findall(V,P2,L2),subset(L1,L2)), N = man(M),
arg(1,Q,FA1),arg(2,FA1,N), saturate1(FA1,X), saturate1(N,X).
[NP[Q every][N man]]] NP = findall(X,man(X),L1),findall(V,P2,L2),subset(L1,L2)

 (pass up saturated Q as the value for the NP)
[V likes][NP John] V=likes(A,B), NP=john, saturate2(V,NP).
[VP [V likes][NP John]] VP = likes(A,john)

(pass up saturated V as the value for the VP)
[NP [Q every][N man]][VP [V likes][NP John]]

 NP = (findall(X,man(X),L1),findall(V,P2,L2),subset(L1,L2)), VP = likes(A,john),
arg(2,NP,C2), arg(1,C2,FA2), arg(2,FA2,VP), saturate1(FA2,Y), saturate1(VP,Z).

Set theory version



Quantifiers
• Example: [S [NP [Q every][N man]][VP [V likes][NP John]]]

– Word Expression
– every findall(U,P1,L1),findall(V,P2,L2),subset(L1,L2).
– man man(M).
– likes likes(A,B).
– John john

• Steps:
[NP [Q every][N man]][VP [V likes][NP John]]

 ?- NP = (findall(X,man(X),L1),findall(V,P2,L2),subset(L1,L2)), VP =
likes(A,john), arg(2,NP,C2), arg(1,C2,FA2), arg(2,FA2,VP), saturate1(FA2,Y),
saturate1(VP,Z).
[S [NP [Q every][N man]][VP [V likes][NP John]]]

S = findall(X,man(X),L1),findall(Y,likes(Y,john),L2),subset(L1,L2)
(pass up saturated NP as the value for S)



Names as Generalized
Quantifiers

• In earlier lectures,
we mentioned that
names directly refer

• Here is another idea
• Conjunction

– X and Y
– both X and Y have to

be of the same type
– in particular,

semantically...
– we want them to have

the same semantic
type

• what is the semantic
type of every baby?

Example
every baby and John likes ice cream
[NP[NP every baby] and [NP John]] likes ice cream
every baby likes ice cream
{X: baby(X)} {Y: likes(Y,ice_cream)}
John likes ice cream
??? {Y: likes(Y,ice_cream)}
John {Y: likes(Y,ice_cream)}
want everything to be a set (to be consistent)
i.e. want to state something like
({X: baby(X)} {X: john(X)}) {Y: likes(Y,ice_cream)}
note: set union ( ) is the translation of “and”



Negative Polarity Items
• Negative Polarity

Items (NPIs)
• Examples:

– every, any
• Constrained

distribution:
– have to be licensed in

some way
– grammatical in a

“negated environment” or
“question”

• Examples:
– (13a) Shelby won’t ever bite you
– (13b) Nobody has any money

– (14a) *Shelby will ever bite you
– (14b) *Noah has any money

– *= ungrammatical

– (15a) Does Shelby ever bite?
– (15b) Does Noah have any money?



Negative Polarity Items
• Inside an if-clause:

– (16a) If Shelby ever bites you, I’ll put him up for adoption
– (16b) If Noah has any money, he can buy some candy

• Inside an every-NP:
– (17a) Every dog which has ever bitten a cat feels the admiration of

other dogs
– (17b) Every child who has any money is likely to waste it on candy

• Not inside a some-NP:
– (17a) Some dog which has ever bitten a cat feels the admiration of

other dogs
– (17b) Some child who has any money is likely to waste it on candy

Not to be confused with free choice (FC) any (meaning: : any man can do that


