LING 364: Introduction to Formal Semantics

Lecture 19 March 20th

Administrivia

- Handout: Chapter 6
 - Quantifiers
 - hard topic
 - we'll start on it today
- Read it for next Tuesday
 - Short Quiz 5

Administrivia

We'll review Homework 4 next time

 a bit behind on grading...

Leftover from Last Lecture

• Example:

- (29) Only John loves his mother
- (29') Only John doesn't love his mother
- World 1 for (29) (=31):
 - loves(john,mother(john)).
 - also, no other facts in the database that would satisfy the query
 - ?- loves(X, mother(john)), + X=john.
- World 2 for (29) (=32):
 - loves(john,mother(john)).
 - also no other facts in the database that would satisfy the query
 - ? loves(X, mother(X)), + X=john.
- Both Worlds are possible since (29) is ambiguous
- Which one is preferred?

Leftover from Last Lecture

• Example:

- (29) Only John loves his mother
- (29') Only John doesn't love his mother
- World 3 for (29'):
 - loves_not(john,mother(john)).
 - also, no other facts in the database that would satisfy the query
 - ?- loves_not(X,mother(john)), \+ X=john.
- World 4 for (29'):
 - loves_not(john,mother(john)).
 - also no other facts in the database that would satisfy the query
 - ? loves_not(X, mother(X)), + X=john.
- Both Worlds are possible since (*presumably*) (29') is also ambiguous like (29)
- Which one is preferred?

Today's Topic

• Chapter 6: Quantifiers

- Not all noun phrases (NPs) are (by nature) directly referential like names
- Quantifiers:
 - "something to do with indicating the quantity of something"
- Examples:
 - every child
 - nobody
 - two dogs
 - several animals
 - most people
 - nobody has seen a unicorn
 - could simply means *something like* (*Prolog-style*):
 - ?- findall(X,(person(X), seen(X,Y), unicorn(Y)),Set),length(Set,0).

- Recall: compositionality idea:
 - elements of a sentence combine in piecewise fashion to form an overall (propositional) meaning for the sentence
- Example:
 - (4) Every baby cried
 - Word
 - cried
 - baby
 - every
 - every baby cried

- Meaning
- cried(X).
- baby(X).

?

proposition (True/False) that can be evaluated in a given world

- Scenario (Possible World):
 - suppose there are three babies...
 - baby(noah).
 - baby(merrill).
 - baby(dani).
 - all three cried
 - cried(noah).
 - cried(merrill).
 - cried(dani).
 - only Dani jumped
 - jumped(dani).
 - Noah and Dani swam
 - swam(noah).
 - swam(dani).

(6)	every baby	exactly one baby	most babies
cried	1		1
jumped		1	
swam			1

- think of quantifiers as "properties-of-properties"
- every_baby(P) is a proposition
- P: property
- every_baby(P) true for P=cried
- every_baby(P) false for P=jumped and P=swam

think of quantifiers as "properties-of-properties"

- every_baby(P) true for P=cried
- every_baby(P) false for P=jumped and P=swam
- Generalized Quantifiers (scary jargon alert!)
 - the idea that quantified NPs represent sets of sets
 - this idea is not as wierd as it sounds
 - we know
 - every_baby(P) is true for certain properties
 - view
 - every_baby(P) = set of all properties P for which this is true
 - in our scenario
 - every_baby(P) = {cried}
 - we know cried can also be view as a set itself
 - cried = set of individuals who cried
 - in our scenario
 - cried = {noah, merrill, dani}

- how do we define the expression every_baby(P)?
- (Montague-style)
- every_baby(P) is shorthand for
 - for all individuals X, baby(X) -> P(X)
 - -> : *if-then (implication* : logic symbol)
- written another way (*lambda calculus-style*):
 - $\lambda P.[\forall X.[baby(X) \rightarrow P(X)]]$
 - ∀: for all (universal quantifier: logic symbol)

Example:

- every baby walks
 - for all individuals X, baby(X) -> walks(X)
- more formally
- [_{NP} every baby] [_{VP} walks]
 - λP.[∀X.[baby(X) -> P(X)]](walks)
 - ∀X.[baby(X) ->walks(X)]

- how do we define this Prolog-style? ٠
- Example: •
 - every baby walks
 - [_{NP} every baby] [_{VP} walks]
 - λP.[∀X (baby(X) -> P(X))](walks)
 - $\forall X (baby(X) -> walks(X))$
- **Possible World (Prolog database):** ٠
 - :- dynamic baby/1. —

(allows us to modify the baby database online)

- baby(a). baby(b).
- walks(a). walks(b). walks(c).
- individual(a). individual(b). individual(c).
- What kind of query would you write? ٠
- One Possible Query (every means there are no exceptions): ٠
 - $? \rightarrow (baby(X), + walks(X)).$
 - (**NOTE**: need a space between \+ and (here) (TRUE)
 - ?- baby(X), \+ walks(X).
 - No
 - ?- assert(baby(d)).
 - ?- baby(X), \+ walks(X).
 - X = d;

Yes

Yes

using idea that $\forall X P(X)$ is the same as $\neg \exists X \neg P(X)$ \exists = "there exists" (quantifier) (implicitly: all Prolog variables are existentially quantified variables)

Aside: Truth Tables

Aside: Truth Tables

Conversion into Prolog

Note: \+ (baby(X), \+walks(X)) is Prolog for ∀X (baby(X) -> walks(X)) Steps:

- $\forall X (baby(X) \rightarrow walks(X))$
- $\forall X (\neg baby(X) \lor walks(X))$
 - (since $P \rightarrow Q = \neg P \vee Q$, see truth tables from two slides ago)
- $\neg \exists X \neg (\neg baby(X) \lor walks(X))$
 - (since $\forall X P(X) = \neg \exists X \neg P(X)$, no exception idea from 3 slides ago)
- − ¬∃X (baby(X) \land ¬walks(X))
 - (by De Morgan's rule, see truth table from last slide)
- − ¬(baby(X) \land ¬walks(X))
 - (can drop ∃ X since all Prolog variables are basically existentially quantified variables)
- $+ (baby(X) \land +walks(X))$
 - (\+ = Prolog negation symbol)
- \+ (baby(X), \+walks(X))
 - (, = Prolog conjunction symbol)

- how do we define this Prolog-style?
- Example:
 - every baby walks
 - [NP every baby] [VP walks]
 - λP.[∀X.[baby(X) -> P(X)]](walks)
 - $\forall X.[baby(X) ->walks(X)]$
- Another Possible World (Prolog database):
 - :- dynamic baby/1.
 - :- dynamic walks/1.
 - % no facts (% = comment)
- Does ?- \+ (baby(X), \+ walks(X)). still work?
- Yes because
 - ?- baby(X), \+ walks(X).
 - No
- cannot be satisfied

- how do we define the expression every_baby(P)?
- (Montague-style)
- every_baby(P) is shorthand for
 - $\lambda P.[\forall X.baby(X) \rightarrow P(X)]$
- (Barwise & Cooper-style)
- think directly in terms of sets
- *leads to another way of expressing the Prolog query*
- Example: every baby walks
- {X: baby(X)} set of all X such that baby(X) is true
- {X: walks(X)} set of all X such that walks(X) is true
- Subset relation (⊆)
- {X: baby(X)} \subseteq {X: walks(X)} the "baby" set must be a subset of the "walks" set

- (Barwise & Cooper-style)
- think directly in terms of sets
- leads to another way of expressing the Prolog query
- Example: every baby walks
- {X: baby(X)} \subseteq {X: walks(X)} the "baby" set must be a subset of the "walks" set
- How to express this as a Prolog query?
 - Queries:
 - ?- findall(X,baby(X),L1). L1 is the set of all babies in the database
 - *?-* findall(X,walks(X),L2). *L2 is the set of all individuals who walk*

```
Need a Prolog definition of the subset relation. This one, for example: subset([],_).
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_]).
member(X,[ |L]) :- member(X,L).
```

- **Example**: every baby walks
- {X: baby(X)} \subseteq {X: walks(X)} the "baby" set must be a subset of the "walks" set
- Assume the following definitions are part of the database:

```
subset([],_).
subset([X|_],L) :- member(X,L).
member(X,[X|_]).
member(X,[_|L]) :- member(X,L).
```

- Prolog Query:
- ?- findall(X,baby(X),L1), findall(X,walks(X),L2), subset(L1,L2).

• True for world:

			14 - [a b]	
_	baby(a).	baby(b).		$L^{T} = [a, b]$
—	walks(a).	walks(b).	walks(c).	2 = [a,b,c] ?- subset(L1,L2) is true

• False for world:

_	baby(a).	baby(b).	baby(d).
_	walks(a).	walks(b).	walks(c).

L1 = [a,b,d]L2 = [a,b,c]?- subset(L1,L2) is false