LING 364: Introduction to
Formal Semantics

Lecture 19
March 20th



Administrivia

 Handout: Chapter 6
— Quantifiers
— hard topic
— we’ll start on it today
* Read it for next Tuesday
— Short Quiz 5



Administrivia

« We'll review Homework 4 next time
— a bit behind on grading...



Leftover from Last Lecture

Example:

— (29) Only John loves his mother

— (29’) Only John doesn’t love his mother
World 1 for (29) (=31):

— loves (john,mother (john)) .

— also, no other facts in the database that would satisfy the query
- ?- loves (X,mother (john)), \+ X=john.

World 2 for (29) (=32):

— loves (john,mother (john)) .
— also no other facts in the database that would satisfy the query
— ? - loves (X,mother (X)), \+ X=john.

Both Worlds are possible since (29) is ambiguous

Which one is preferred?



Leftover from Last Lecture

Example:

— (29) Only John loves his mother

— (29’) Only John doesn’t love his mother
World 3 for (29’):

- loves not (john,mother (john)) .

— also, no other facts in the database that would satisfy the query
- ?- loves not (X,mother (john)), \+ X=john.

World 4 for (29’):
- loves not (john,mother (john)) .
— also no other facts in the database that would satisfy the query
- ? - loves not (X,mother (X)), \+ X=john.
Both Worlds are possible since (presumably) (29’) is also ambiguous
like (29)
Which one is preferred?



Today's Topic

« Chapter 6: Quantifiers



Quantifiers

Not all noun phrases (NPs) are (by nature) directly referential like
names
Quantifiers:

— “something to do with indicating the quantity of something”
Examples:

— every child

— nobody

— two dogs

— several animals

— most people

— nobody has seen a unicorn
— could simply means something like (Prolog-style):
—  ?-findall(X,(person(X), seen(X,Y), unicorn(Y)),Set),length(Set,0).



Quantifiers

* Recall: compositionality idea:

— elements of a sentence combine in piecewise fashion to
form an overall (propositional) meaning for the sentence

« Example:
— (4) Every baby cried
— Word Meaning
— cried cried(X).
— baby baby(X).
— every ?
— every baby cried proposition (True/False)

— that can be evaluated in a given world



Quantifiers

Scenario (Possible World):

suppose there are three
babies...

baby(noah).
baby(merrill).
baby(dani).
all three cried
» cried(noah).
 cried(merrill).
 cried(dani).
only Dani jumped
* jumped(dani).
Noah and Dani swam
« swam(noah).
« swam(dani).

(6) every exactly | most
baby one babies
baby
cried v v
jumped v
swam 4

« think of quantifiers as
“properties-of-properties”

« every baby(P) is a proposition

* P: property

« every baby(P) true for P=cried

« every baby(P) false for P=jumped

and P=swam




Quantifiers

* think of quantifiers as “properties-of-properties”

every baby(P) true for P=cried
every baby(P) false for P=jumped and P=swam

* Generalized Quantifiers (scary jargon alert!)

the idea that quantified NPs represent sets of sets
this idea is not as wierd as it sounds
we know
* every_baby(P) is true for certain properties
view
+ every_baby(P) = set of all properties P for which this is true
in our scenario
* every_baby(P) = {cried}
we know cried can also be view as a set itself
» cried = set of individuals who cried
in our scenario
+ cried = {noah, merrill, dani}



Quantifiers

how do we define the expression every_baby(P)?
(Montague-style)
every baby(P) is shorthand for
— for all individuals X, baby(X) -> P(X)
— ->: jf-then (implication : logic symbol)
written another way (lambda calculus-style).
—  AP.[VX.[baby(X) -> P(X)]]
— V. for all (universal quantifier. logic symbol)

Example:
— every baby walks
for all individuals X, baby(X) -> walks(X)
— more formally
— [y\p every baby] [, walks]
AP.[V X.[baby(X) -> P(X)]](walks)
Vv X.[baby(X) ->walks(X)]



Quantifiers

how do we define this Prolog-style?
Example:

— every baby walks

— [yp every baby] [, walks]
AP.[V X (baby(X) -> P(X))](walks)
V X (baby(X) ->walks(X))

Possible World (Prolog database):

— - dynamic baby/1. (allows us to modify the baby database online)
— baby(a). baby(b).
— walks(a). walks(b). walks(c).

— individual(a). individual(b). individual(c).
What kind of query would you write?
One Possible Query (every means there are no exceptions):

—  ?-\+ (baby(X), \+ walks(X)). (NOTE: need a space between \+ and ( here)

—  Yes (TRUE)

—  ?-baby(X), \+ walks(X). using idea that v X P(X)

- 2‘0 baby() is the same as = 3 X 7P(X)

- /- asse a . 1 . ” LN all
e ks, 3= “there exists” (quantifier)
- X=d: (implicitly: all Prolog variables

—  Yes are existentially quantified variables)



Aside: Truth Tables

logic of implication PlviQ Evt?lf On(;yQWhe”F
P -> Q = (truth value) TITIT ° an are
T T T
£ T FIT|T
F F T
T F FE FIEIF Plv [ Q PvQ=F only when
oD : P=T and Q=F
i.e. if P is true, Q must be true in order
for P->Q to be true T|IT|T TRT T
if P is false, doesn’t matter what Q is, FTIT | T
P->Q is true
conventionally written as: FT |F |F
Pl->|Q TF | T | T
T |T !
FIT |T _ :
Hence, P->Q is equivalent to "PvQ
FIT |F
P->Q=F only when
TIF |F | P=Tand Q=F




 De Morgan’s Rule
=1PAQ

Aside: Truth Tables

« (PvQ)
=P [ A]-Q
FT | F |FT
TF [F [FT
TF | T | TF
FT | F |FT

Plv]|Q =2(PvQ)| ~(PvQ)=T only when
both P and Q are F

TIT|T F

FIT(T : F

FIF|F T

TIT|T F

“"PA~Q=T only when
both P and Q are F

Hence, 7(PvQ) is equivalent to -P/\"Q}




Conversion into Prolog

Note: \+ (baby(X), \+walks(X)) is Prolog for ¥V X (baby(X) -> walks(X))
Steps:
— VX (baby(X) -> walks(X))
— VX (7baby(X) v walks(X))
* (since P->Q = 7PvQ, see truth tables from two slides ago)
— =3 X = (baby(X) v walks(X))
* (since VX P(X)=~3X ~P(X), no exception idea from 3 slides ago)
— 23X (baby(X) A~walks(X))
* (by De Morgan’s rule, see truth table from last slide)
— 7(baby(X) Awalks(X))

» (can drop 3 X since all Prolog variables are basically existentially quantified
variables)

— \+ (baby(X) A \+walks(X))

* (\+ = Prolog negation symbol)
— \+ (baby(X), \+walks(X))

* (, = Prolog conjunction symbol)



Quantifiers

how do we define this Prolog-style?

Example:
— every baby walks
— [yp every baby] [, walks]
AP.[V X.[baby(X) -> P(X)])(walks)
V X.[baby(X) ->walks(X)]
Another Possible World (Prolog database):
— - dynamic baby/1.
— :-dynamic walks/1.
— % no facts (% = comment)

Does 7- \+ (baby(X), \+ walks(X)). still work?

Yes because
—  ?7- baby(X), \+ walks(X).
— No

cannot be satisfied



Quantifiers

how do we define the expression every_baby(P)?
(Montague-style)
every baby(P) is shorthand for

—  AP.[V X.baby(X) -> P(X)]

(Barwise & Cooper-style)
think directly in terms of sets
leads to another way of expressing the Prolog query

Example: every baby walks
{X: baby(X)} set of all X such that baby(X) is true
{X: walks(X)} set of all X such that walks(X) is true

Subset relation (<)
{X: baby(X)} &{X: walks(X)} the “baby” set must be a subset of the “‘walks” set



Quantifiers

(Barwise & Cooper-style)
think directly in terms of sets
leads to another way of expressing the Prolog query

Example: every baby walks
{X: baby(X)} &{X: walks(X)} the “baby” set must be a subset of the “‘walks” set

How to express this as a Prolog query?

* Queries:
- ?-findall(X,baby(X),L1). L1 is the set of all babies in the database
- ?-findall(X,walks(X),L2). L2 is the set of all individuals who walk

Need a Prolog definition of the subset relation. This one, for example:
subset([], ).

subset([X|L1],L2) :- member(X,L2), subset(L1,L2).

member(X,[X|_]).

member(X,[_|L]) :- member(X,L).



Quantifiers

Example: every baby walks
{X: baby(X)} S{X: walks(X)} the “baby” set must be a subset of the “walks” set
Assume the following definitions are part of the database:
subset([],_).
subset([X]|_],L) :- member(X,L).
member(X,[X|_1]).
member(X,[ _|L]) :- member(X,L).
Prolog Query:
?- findall(X,baby(X),L1), findall(X,walks(X),L2), subset(L1,L2).

* True for world:
— baby(a). baby(b).
— walks(a). walks(b). walks(c).

L1 =[a,b]
L2 = [a,b,C]
?- subset(L1,L2) is true

 False for world:
—  baby(a). baby(b). baby(d). L1 =[a,b,d]
— walks(a). walks(b).  walks(c). L2 = [a,b,c]
?- subset(L1,L2) is false



