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Administrivia

• Handout: Chapter 6
– Quantifiers
– hard topic
– we’ll start on it today

• Read it for next Tuesday
– Short Quiz 5



Administrivia

• We’ll review Homework 4 next time
– a bit behind on grading...



Leftover from Last Lecture
• Example:

– (29) Only John loves his mother
– (29’) Only John doesn’t love his mother

• World 1 for (29) (=31):
– loves(john,mother(john)).

– also, no other facts in the database that would satisfy the query
– ?- loves(X,mother(john)), \+ X=john.

• World 2 for (29) (=32):
– loves(john,mother(john)).

– also no other facts in the database that would satisfy the query
–  ? - loves(X,mother(X)),\+ X=john.

• Both Worlds are possible since (29) is ambiguous
• Which one is preferred?



Leftover from Last Lecture
• Example:

– (29) Only John loves his mother
– (29’) Only John doesn’t love his mother

• World 3 for (29’):
– loves_not(john,mother(john)).

– also, no other facts in the database that would satisfy the query
– ?- loves_not(X,mother(john)), \+ X=john.

• World 4 for (29’):
– loves_not(john,mother(john)).

– also no other facts in the database that would satisfy the query
–  ? - loves_not(X,mother(X)),\+ X=john.

• Both Worlds are possible since (presumably) (29’) is also ambiguous
like (29)

• Which one is preferred?



Today’s Topic

• Chapter 6: Quantifiers



Quantifiers
• Not all noun phrases (NPs) are (by nature) directly referential like

names
• Quantifiers:

– “something to do with indicating the quantity of something”
• Examples:

– every child
– nobody
– two dogs
– several animals
– most people

– nobody has seen a unicorn
–  could simply means something like (Prolog-style):
– ?- findall(X,(person(X), seen(X,Y), unicorn(Y)),Set),length(Set,0).



Quantifiers
• Recall: compositionality idea:

– elements of a sentence combine in piecewise fashion to
form an overall (propositional) meaning for the sentence

• Example:
– (4) Every baby cried
– Word Meaning
– cried cried(X).
– baby baby(X).
– every ?
– every baby cried proposition (True/False)
–  that can be evaluated in a given world



swam
jumped
cried

most
babies

exactly
one
baby

every
baby

(6)

Quantifiers
• Scenario (Possible World):

– suppose there are three
babies...

• baby(noah).
• baby(merrill).
• baby(dani).

– all three cried
• cried(noah).
• cried(merrill).
• cried(dani).

– only Dani jumped
• jumped(dani).

– Noah and Dani swam
• swam(noah).
• swam(dani).

• think of quantifiers as
“properties-of-properties”

• every_baby(P) is a proposition
• P: property
• every_baby(P) true for P=cried
• every_baby(P) false for P=jumped

and P=swam



Quantifiers
• think of quantifiers as “properties-of-properties”

– every_baby(P) true for P=cried
– every_baby(P) false for P=jumped and P=swam

• Generalized Quantifiers (scary jargon alert!)
– the idea that quantified NPs represent sets of sets
– this idea is not as wierd as it sounds
– we know

• every_baby(P) is true for certain properties
– view

• every_baby(P) = set of all properties P for which this is true
– in our scenario

• every_baby(P) = {cried}
– we know cried can also be view as a set itself

• cried = set of individuals who cried
– in our scenario

• cried = {noah, merrill, dani}



Quantifiers
• how do we define the expression every_baby(P)?
• (Montague-style)
• every_baby(P) is shorthand for

– for all individuals X, baby(X) -> P(X)
– -> : if-then (implication : logic symbol)

• written another way (lambda calculus-style):
– λP.[ .[baby(X) -> P(X)]]
–  for all (universal quantifier: logic symbol)

• Example:
– every baby walks

• for all individuals X, baby(X) -> walks(X)
– more formally
– [NP every baby] [VP walks]

• λP.[ .[baby(X) -> P(X)]](walks)
• .[baby(X) ->walks(X)]



Quantifiers
• how do we define this Prolog-style?
• Example:

– every baby walks
– [NP every baby] [VP walks]

• λP.[  (baby(X) -> P(X))](walks)
•  (baby(X) ->walks(X))

• Possible World (Prolog database):
– :- dynamic baby/1. (allows us to modify the baby database online)
– baby(a). baby(b).
– walks(a). walks(b).     walks(c).
– individual(a). individual(b).  individual(c).

• What kind of query would you write?
• One Possible Query (every means there are no exceptions):

– ?- \+ (baby(X), \+ walks(X)). (NOTE: need a space between \+ and ( here)
– Yes (TRUE)

– ?- baby(X), \+ walks(X).
– No
– ?- assert(baby(d)).
– ?- baby(X), \+ walks(X).
– X = d ;
– Yes

using idea that  P(X) 
is the same as ¬ X ¬P(X)

 “there exists” (quantifier)
(implicitly: all Prolog variables
are existentially quantified variables)



Aside: Truth Tables
• logic of implication
• P -> Q = (truth value)
• T      T     T
• F      T     T
• F      F     T
• T      F     F
• i.e. if P is true, Q must be true in order

for P->Q to be true
• if P is false, doesn’t matter what Q is,

P->Q is true
• conventionally written as:

FFT

FTF

TTF

TTT

Q->P

TTT

FFF

TTF

TTT

QvP

TTTF

FFFT

TTFT

TTTF

Qv¬P

PvQ=F only when
both P and Q are F

¬PvQ=F only when
P=T and Q=F

P->Q=F only when
P=T and Q=F

Hence, P->Q is equivalent to ¬PvQ 



Aside: Truth Tables

• De Morgan’s Rule
• ¬(P Q) = ¬P ¬Q

TTT

FFF

TTF

TTT

QvP

F

T

F

F

¬(PvQ)

FTFFT

TFTTF

FTFTF

FTFFT

¬Q¬P

¬(PvQ)=T only when
both P and Q are F

¬P ¬Q=T only when
both P and Q are F

Hence, ¬(PvQ) is equivalent to ¬P ¬Q



Conversion into Prolog
Note: \+ (baby(X), \+walks(X)) is Prolog for  (baby(X) -> walks(X))
Steps:

–  (baby(X) -> walks(X))
–  (¬baby(X) v walks(X))

• (since P->Q = ¬PvQ, see truth tables from two slides ago)
– ¬  ¬ (¬baby(X) v walks(X))

• (since  P(X) = ¬  ¬P(X), no exception idea from 3 slides ago)
– ¬  (baby(X) ¬walks(X))

• (by De Morgan’s rule, see truth table from last slide)
– ¬(baby(X) ¬walks(X))

• (can drop  since all Prolog variables are basically existentially quantified
variables)

– \+ (baby(X) \+walks(X))
• (\+ = Prolog negation symbol)

– \+ (baby(X), \+walks(X))
• (, = Prolog conjunction symbol)



Quantifiers
• how do we define this Prolog-style?
• Example:

– every baby walks
– [NP every baby] [VP walks]

• λP.[ .[baby(X) -> P(X)]](walks)
• .[baby(X) ->walks(X)]

• Another Possible World (Prolog database):
– :- dynamic baby/1.
– :- dynamic walks/1.
– % no facts (% = comment)

• Does ?- \+ (baby(X), \+ walks(X)). still work?

• Yes because
– ?- baby(X), \+ walks(X).
– No

• cannot be satisfied



Quantifiers
• how do we define the expression every_baby(P)?
• (Montague-style)
• every_baby(P) is shorthand for

– λP.[ .baby(X) -> P(X)]

• (Barwise & Cooper-style)
• think directly in terms of sets
• leads to another way of expressing the Prolog query

• Example: every baby walks
• {X: baby(X)} set of all X such that baby(X) is true
• {X: walks(X)} set of all X such that walks(X) is true

• Subset relation (
• {X: baby(X)} {X: walks(X)}    the “baby” set must be a subset of the “walks” set



Quantifiers
• (Barwise & Cooper-style)
• think directly in terms of sets
• leads to another way of expressing the Prolog query

• Example: every baby walks
• {X: baby(X)} {X: walks(X)}    the “baby” set must be a subset of the “walks” set

• How to express this as a Prolog query?

• Queries:
• ?- findall(X,baby(X),L1). L1 is the set of all babies in the database
• ?- findall(X,walks(X),L2). L2 is the set of all individuals who walk

Need a Prolog definition of the subset relation. This one, for example:
subset([],_).
subset([X|L1],L2) :- member(X,L2), subset(L1,L2).
member(X,[X|_]).
member(X,[_|L]) :- member(X,L).



Quantifiers
• Example: every baby walks
• {X: baby(X)} {X: walks(X)}    the “baby” set must be a subset of the “walks” set
• Assume the following definitions are part of the database:

subset([],_).
subset([X|_ ],L) :- member(X,L).
member(X,[X|_ ]).
member(X,[ _|L]) :- member(X,L).

• Prolog Query:
• ?- findall(X,baby(X),L1), findall(X,walks(X),L2), subset(L1,L2).

• True for world:
– baby(a). baby(b).
– walks(a). walks(b).     walks(c).

L1 = [a,b]
L2 = [a,b,c]
?- subset(L1,L2) is true

• False for world:
– baby(a). baby(b).     baby(d).
– walks(a). walks(b).     walks(c).

L1 = [a,b,d]
L2 = [a,b,c]
?- subset(L1,L2) is false


