LING 364: Introduction to Formal Semantics

Lecture 19

March 28th

Administrivia

- Homework 4 due today
 - usual rules: in my inbox by midnight
 - handed out last Tuesday

Today's Topic

Finish Chapter 5

- (Section 5.3)
- Contrast Novelty (indefinite) and Familarity (definite)
- Example:
 - (6a) A dog (new information) came into the house
 - (6b) The dog (old information) wanted some water
- (Section 5.4.1)

Names = concealed descriptions

- Example:
 - (A) (Name) Confucius
 - (B) (Definite Description) the most famous Chinese philosopher
 - both seem to "pick out" or refer to a single individual but there is one important difference:
 - (B) gives you the criterion for computing or picking out the individual

- (Section 5.4.2–3)
- · Names are directly referential
- Variations:
 - Kripke: names are non-descriptive, names refer to things from historical reasons (causal chain)
 - Evans: social context is important (names can change wrt. referent)

Examples:

- Madagascar
 - · originally named part of mainland Africa
 - · as a result of Marco Polo's mistake: the island off the coast of Africa
- kangaroo
- "I don't understand" (aboriginal)
- ganjurru (Guugu Yimidhirr word)
- ono (a fish: aka wahoo)
- "good to eat" (Hawaiian)
- livid as in "livid with rage"
- pale or red

- (Section 5.4.4)
- Referential and Attributive Meanings
- Russell: definite noun phrases do not refer at all
- Example:
 - the teacher is nice
 teacher 99 (directly referential)
 - there is exactly one X such that teacher (X), nice (X).
 - (attributive: no direct naming)
- Donnellan: both are used
 - Jones has been charged with Smith's murder
 - Jones is behaving oddly at the trial
 - Statement: "Smith's murderer is insane" (referential)
 - everyone loves Smith
 - Smith was brutually murdered
 - Statement: "Smith's murderer is insane" (attributive)

- (Section 5.5) (Topic of Homework 4)
- Plural and Mass Terms
- Godehard Link: Lattice structure
- **Example**: possible worlds (w1,..,w4)
 - a mapping from world to a set of individuals

•
$$w1 \rightarrow \{A,B\}$$

• $w2 \rightarrow \{B,C\}$

• $w3 \rightarrow \{A,B,C\}$

w4 → Ø

horse(a). horse(b).

horse(b). horse(c).

horse(a). horse(b). horse(c).

- W3:
 - meaning of horse: {A,B,C}
 - meaning of *horses*: {A+B,A+C,B+C,A+B+C}
- Lattice structure representation:

Mass nouns: "uncountable"

Examples:

gold (no natural discrete decomposition into countable, or bounded, units)

water

furniture *three furnitures

three pieces of furniture

– (unit = one piece)

defines a bounded item which we can count

Generalizing the lattice viewpoint

- do we have an infinite lattice for mass nouns?
- how do we represent mass nouns?

Compare with:

three horses (English)

– does "horses" comes complete with pre-defined units?

three horse-classifier horse (Chinese: sān pǐ mǎ 三匹马)

three "units of" horse

Computing Quantity

One idea (later to be modified for Chapter 6):

```
phrase meaning
```

furniturefurniture(X).

piece of furniture furniture(X), X is bounded.

three pieces of furniture - requires X to be bounded

- |X: furniture(X) | = 3, X is bounded.

- *three furniture | X: furniture(X) | doesn't compute

Chinese: ma is like furniture, doesn't come with bounded property

```
phrase meaning
```

horseshorses(X), X is bounded.

- three horses | X: horses(X) | = 3, X is bounded.

Kinds

- (Section 5.6)
- Bare plurals: relation to quantification?
 - occur on their own, i.e. without some determiner or quantifier
- Examples:
 - (15) Horses are rare
 - (16) Horses are mammals
 - (17) Horses have tails
 - (18) Horses give birth to their foals in the spring
 - (19) Horses were galloping across the plain
- What is different about the meaning of horses in (15)–(19)?

Kinds

- Carlson: nature of predication
- concept of horse:
 - species-level: kind or object-level
- assertion:
 - horses: intrinsically of level: kind
- Idea (coercion):
 - Meaning of horse depends on the type of predicate

Examples

- (15) Horses are rare
- predicate rare: selects for kind or species-level
- (20) rare(horses)
- (17) Horses have tails
- predicate have tails is an object-level predicate (permanent property)
- mismatch
- apply a generic operator Gn: Gn: object-level → species-level

Kinds

- Semantics:
 - Gn(P) true of a kind iff P is true of typical instances of P
 - here: iff = if and only if
- Idea: stage-level
 - object-level property
 - not a permanent property
 - applies during a time-slice
- Example
 - (19) Horses were galloping across the plain
 - predicate were galloping across the plain is stage-level
 - coercion or shift needed to apply to some individual: Silver
- Other predicates? Name some Adjectives

Pronouns and Anaphors

- (Section 5.7)
- Example:
 - (25) Shelby is cute. He is a Keeshond.
 - predicate saturation
- Referent of pronoun not always fully determined:
 - may be ambiguous
- Example: (ambiguity)
 - (26) Shelby met Bucky. He sniffed him.
 - possibilities for he and him?

Pronouns and Anaphors

- Example:
 - (27) Shelby met another male dog and a female cat. He sniffed the dog and bit the cat.
- Example:
 - (29) Only John loves his mother
 - possibilities for his?
- World 1 (=31):
 - loves(john,mother(john)).
 - also, no other facts in the database that would satisfy the query
 - ?- loves(X,mother(john)), \+ X=john.
- World 2 (=32):
 - loves(john,mother(john)).
 - also no other facts in the database that would satisfy the query
 - ? loves(X,mother(X)),\+ X=john.