LING 364: Introduction to Formal Semantics

Lecture 18
March 21st

Administrivia

- Welcome back!
- No class this Thursday (I'm out of town)
- computer lab is reserved for Thursday
- you are free to use it for the homework
- Homework 4 out today
- a short homework
- due next Tuesday (usual rules)
- email me if you have questions

Administrivia

- Today
- Quiz 4 Review
- Continue with Chapter 5
- Homework 4

Quiz 4 Review

- Question 1:
- Assuming
- s(P) --> name (N), vp(P), \{saturatel(P,N)\}.
- vp(P) --> v(copula), np_pred(P).
- np_pred (cute (_X)) --> [cute].
- v(copula) --> [is].
- (1) What would you need to add to make this query work?
- ?- s(M, [shelby,is, cute], []).

1. Answer: name(shelby) --> [shelby].
?- s(M,[shelby,is, cute], []).
$\mathrm{M}=$ cute (shelby) ?
yes

Quiz 4 Review

- Question 2:
- Describe in words (or implement)
- What would you need to change to make this query work?
- ?- s(M,[the,dog,which,lives,at,paul,'\'s',house,is,cute],[]).

We can already handle the query:
?- np(X,[the,dog,which,lives,at,paul,''l's',house],[]).
X = dog(_A),lives_at(_A,house(paul))
So we want to compute
dog(X), lives_at(X,house(paul)),cute(X).

Quiz 4 Review

```
- np(M) --> [the], n(M).
- np(M) --> name(N), ['''s'], n(M), {saturate1(M,N)}.
- np((M1,M2)) --> np(M1), rel_clause(M2), {saturate1(M1,X), saturate1(M2,x)}.
```

- n(dog(_X)) --> [dog].
- n(house(_X)) --> [house].
- name(paul) --> [paul].
- name(mary) --> [mary].
- rel_clause(M) --> [which], subj_s(M).
- subj_s(M) --> vp(M).
- vp(M) --> v(M), np(Y), \{saturate2(M,Y)\}.
- v(lives_at(_X,_y)) --> [lives,at].
- saturatel(P,Y) :- $\arg (1, \mathrm{P}, \mathrm{Y})$.
- saturate2(P,Y) :- $\arg (2, \mathrm{P}, \mathrm{Y})$.

from Question 1

$s(P) \quad->$ name (N), vp $(P),\{$ saturate1 $(P, N)\}$.
vp(P) --> v(copula), np_pred(P).
np_pred(cute(_X)) --> [cute].
v(copula) --> [is].

need to add one rule

s((P1, P2)) --> np(P1), vp(P2),
$\left\{P 1=\left(P 3, _\right)\right.$, saturate1 ($P 3, X$), saturate1 ($\mathrm{P} 2, \mathrm{X}$) \}.
?- s(X,[the,dog,which,lives,at, paul,''l's',house,is,cute],[]).
X = (dog(_A),lives_at(_A,house(paul))),cute(_A)

Today’s Topic

- Continue with Chapter 5
- Homework 4

Indefinite NPs

- (Section 5.3)
- Contrasting indefinites and definites with respect to discourse
- Example:
- (6a) A dog came into the house (followed by)
- (6b) The dog wanted some water
- Information-wise:
- (6a) A dog (new information) came into the house
- (6b) The dog (old information) wanted some water
- Novelty-familarity distinction

Indefinite NPs

- Information-wise:
- (6a) A dog (new information) came into the house
- (6b) The dog (old information) wanted some water
- How to represent this?
- One possibility:
- (6a) dog(X), came_into(X,house99).
- Imagine a possible world (Prolog database):
- dog(dog1). dog(dog2). dog(dog3).
- came_into(dog3,house99).
- Query:
- ?- dog(X), came_into(X,house99).
- $\mathrm{X}=\operatorname{dog} 3$
- (6b) wanted (dog3, water) .

Names = concealed descriptions

- (Section 5.4.1)
- Example:
- (A) (Name) Confucius
- (B) (Definite Description) the most famous Chinese philosopher
- Similarities
- both seem to "pick out" or refer to a single individual
- One important difference
- (B) tells you the criterion for picking out the individual
- X such that chinese (X), philosopher (X), more_famous_than (X, Y), chinese (Y), philosopher $(\mathrm{Y}), \+\mathrm{X}=\mathrm{Y}$.
- is this characterization complete?
- (A) doesn't
- we trust, in most possible worlds, computation gives us $X=$ confucius

Also saw this earlier for "Shelby" and "the dog which lives at Paul's house

Names are directly referential

－（Section 5．4．2）
－Kripke：names are non－descriptive
－names refer to things from historical reasons（causal chain）
－Example（clear causal history）：
－Baby X is born
－Parents name it Confucius
－other people use and accept parent＇s name
－gets passed down through history etc．．．
－（actually not the best example to use．．．）

- real name：Kong Qiu 孔子
- styled as＂Master Kong＂＝Confucius：孔夫子

Names can change their referent

- (Section 5.4.3)
- A slight modification from Kripke
- Evans: social context is important
- Example:
- Madagascar
- originally: named part of mainland Africa
- as a result of Marco Polo's mistake: the island off the coast of Africa
- Another example (possibly debunked):
- kangaroo
- "I don't understand" (aboriginal)
- ganjurru (Guugu Yimidhirr word)
- Another example:
- ono
- "good to eat" (Hawaiian)
- Adjectives (Chomsky):
- livid as in "livid with rage"
- pale
- red

Referential and Attributive Meanings

- (Section 5.4.4)
- Russell: definite noun phrases do not refer at all
- Example:
- the teacher is nice
- nice (teacher99). (directly referential)
- there is exactly one X such that teacher (X), nice (X).
-

(attributive: no direct naming)

- On the attributive reading:
- the = there is exactly one X such that
- (i.e. "the" is like a quantifier)
- Which one is right and does it make any difference?

Referential and Attributive Meanings

- (Section 5.4.4)
- Donnellan: both are used
- Example 1:
- Jones has been charged with Smith's murder
- Jones is behaving oddly at the trial
- Statement:
- "Smith's murderer is insane"
- referential or attributive use?
pick out Jones irrespective of whether he is innocent or not therefore, referential

Smith's murderer = whoever murdered Smith "quantificational"
therefore, attributive

- "Smith's murderer is insane"
- referential or attributive use?

Plural and Mass Terms

- (Section 5.5)
- Godehard Link: Lattice structure
- horse:
- a property, i.e. horse (X) is true for some individuals X given some world (or database)
- Example: possible worlds (w1,..,w4)
- (11) expressed as a mapping from world to a set of individuals
- w1 $\rightarrow\{A, B\}$
horse(a). horse(b).
- w2 $\rightarrow\{\mathrm{B}, \mathrm{C}\}$
horse(b). horse(c).
- w3 $\rightarrow\{A, B, C\}$
horse(a). horse(b). horse(c).
- $\mathrm{w} 4 \rightarrow \varnothing$
- Then
- meaning of horse in $w 3=\{A, B, C\}$
- meaning of horses in $w 3=\{A+B, A+C, B+C, A+B+C\}$ (idea: sum)

Plural and Mass Terms

- Example possible worlds (w1,.., w4):
- (11) expressed as a mapping from world to a set of individuals
- $\mathrm{w} 1 \rightarrow\{\mathrm{~A}, \mathrm{~B}\}$
- w2 $\rightarrow\{B, C\}$
- w $3 \rightarrow\{A, B, C\}$
- $\mathrm{w} 4 \rightarrow \varnothing$
- Then
- meaning of horse in $w 3=\{A, B, C\}$
- meaning of horses in $w 3=\{A+B, A+C, B+C, A+B+C\}$ (idea: sum)
- In Prolog database form:
- w3: horse(a). horse(b). horse(c).
- meaning of horse:
- set of Xs that satisfies the query ?- horse (X).
- or ?- findall(X,horse(X),List).

$$
\text { List }=[a, b, c] .
$$

- meaning of horses?

findall/3 and length/2

- [Introduced previously in lecture 17 slides]
- findall/3 and length/2
- findall(X,P,List).
- List contains each X satisfying predicate P
- length(List,N).
- N is the length of List
- Example:
- ?- findall(X,dog(X),List), length(List,1).
- encodes the definite description "the dog"
- i.e. query holds (i.e. is true) when $\operatorname{dog}(X)$ is true and there is a unique X in a given world

Plural and Mass Terms

- Database (w3):
- horse(a).
- horse(b).
- horse(c).
- horses(Sum) :-
- findall(X,horse(X),L),
- \quad sum(L,Sum).
- $\quad \operatorname{sum}(L, X+Y):-\operatorname{pick}(X, L, L p), \operatorname{pick}\left(Y, L p, _\right)$.
- $\operatorname{sum}(L, X+S u m):-\operatorname{pick}(X, L, L p)$, sum(Lp,Sum).
- $\quad \operatorname{pick}(X,[X \mid L], L)$.
- $\quad \operatorname{pick}(X,[\mid L], L p):-\operatorname{pick}(X, L, L p)$.
- Query:
- ?- horses(X).
- $\quad X=a+b$? ;
- $\quad X=a+c$? ;
- $X=b+c$?
- $\quad X=a+(b+c)$?;
- no
- Query:
- ?- findall(X,horses(X),List).
- List $=[a+b, a+c, b+c, a+(b+c)]$?
- no

Homework 4

- Question 1 (8pts)
- (adapted from page 96)
- The proper meaning of horses associates a set of plural individuals with each possible world
- Convert the sample meaning for horse in w1,..,w4 in (11) into a meaning for horses
- Use Prolog
- for each case, give database and relevant query and output
- Question 2 (4pts)
- Do the same conversion for w5 and w6 below:
- w5 $\rightarrow\{A, B, C, D, E\}$
- w6 $\rightarrow\{A, B, C, D, E, F\}$
- Question 3 (4pts)
- How would you write the Prolog query for "three horses"?
- Question 4 (4pts)
- How would you write the Prolog query for "the three horses"?

Plural and Mass Terms

- We have:
- meaning of horse in w3 $=\{A, B, C\}$
- meaning of horses in w3 $=\{\mathrm{A}+\mathrm{B}, \mathrm{A}+\mathrm{C}, \mathrm{B}+\mathrm{C}, \mathrm{A}+\mathrm{B}+\mathrm{C}\}$
- Lattice structure representation (w3):
three horses

Plural and Mass Terms

－Generalizing the lattice viewpoint
－do we have an infinite lattice for mass nouns？
－how do we represent mass nouns？
－Mass nouns：＂uncountable＂
－Examples：
－gold（no natural discrete decomposition into countable，or bounded，units）
－water
－furniture＊three furnitures
－three pieces of furniture
－（unit＝one piece）
－defines a bounded item which we can count
－Compare with：
－three horses
（English）
－does＂horses＂comes complete with pre－defined units？
－three horse－classifier horse（Chinese：sān pǐ mǎ 三匹马）
－three＂units of＂horse

Plural and Mass Terms

- One idea:
- phrase meaning
- furniture furniture (X).
- piece of furniture furniture $(X), X$ is bounded.
- three pieces of furniture - requires X to be bounded
$-\quad \mid$ furniture $(X) \mid=3, X$ is bounded.
- *three furniture | furniture $(X) \mid$ doesn't compute
- Chinese: ma is like furniture, doesn't come with bounded property
- phrase
- horses
- three horses
meaning
horses $(X), X$ is bounded.
\mid horses $(X) \mid=3, X$ is bounded.

