LING 364: Introduction to Formal Semantics

Lecture 18 March 21st

Administrivia

- Welcome back!
- No class this Thursday (I'm out of town)
 - computer lab is reserved for Thursday
 - you are free to use it for the homework
- Homework 4 out today
 - a short homework
 - due next Tuesday (usual rules)
 - email me if you have questions

Administrivia

- Today
 - Quiz 4 Review
 - Continue with Chapter 5
 - Homework 4

Quiz 4 Review

- Question 1:
- Assuming
 - s(P) --> name(N), vp(P), {saturate1(P,N)}.
 - vp(P) --> v(copula), np_pred(P).
 - np_pred(cute(_X)) --> [cute].
 - v(copula) --> [is].
- (1) What would you need to add to make this query work?
 - ?- s(M,[shelby,is,cute],[]).

1. Answer: name(shelby) --> [shelby].

```
?- s(M,[shelby,is,cute],[]).
M = cute(shelby) ?
yes
```

Quiz 4 Review

• Question 2:

- Describe in words (or implement)
- What would you need to change to make this query work?
 - ?- s(M,[the,dog,which,lives,at,paul,'\'s',house,is,cute],[]).

We can already handle the query: ?- np(X,[the,dog,which,lives,at,paul,'\'s',house],[]). X = dog(_A),lives_at(_A,house(paul))

So we want to compute dog(X),lives_at(X,house(paul)),**cute(X)**.

Quiz 4 Review

 $np(M) \longrightarrow [the], n(M).$

np(M) --> name(N), ['''s'], n(M), {saturate1(M,N)}. np((M1,M2)) --> np(M1), rel_clause(M2), {saturate1(M1,X), saturate1(M2,X)}. only deals with $n(dog(X)) \rightarrow [dog].$ names from Question 1 $n(house(X)) \rightarrow [house].$ $s(P) \rightarrow name(N)$, vp(P), {saturate1(P,N)}. name(paul) --> [paul]. vp(P) --> v(copula), np pred(P). name(mary) --> [mary]. np pred(cute(X)) --> [cute]. $v(copula) \longrightarrow [is].$ rel clause(M) --> [which], subj s(M). need to add one rule subj $s(M) \rightarrow vp(M)$. _ $s((P1, P2)) \rightarrow np(P1), vp(P2),$ $vp(M) \rightarrow v(M)$, np(Y), {saturate2(M,Y)}. {P1=(P3,), saturate1(P3,X), saturate1(P2,X)}. v(lives at(X, Y)) --> [lives,at]. ?- s(X,[the,dog,which,lives,at,paul,'\'s',house,is,cute],[]). X = (dog(_A),lives_at(_A,house(paul))),cute(_A) saturate1(P, Y) :- arg(1,P, Y). saturate2(P,Y) :- arg(2,P,Y).

Today's Topic

- Continue with Chapter 5
- Homework 4

Indefinite NPs

- (Section 5.3)
- Contrasting *indefinites* and *definites* with respect to discourse
- Example:
 - (6a) A dog came into the house (followed by)
 - (6b) The dog wanted some water
- Information-wise:
 - (6a) A dog (new information) came into the house
 - (6b) The dog (old information) wanted some water
- Novelty-familarity distinction

Indefinite NPs

- Information-wise:
 - (6a) A dog (new information) came into the house
 - (6b) The dog (old information) wanted some water
- How to represent this?
- One possibility:
 - (6a) dog(\mathbf{X}), came_into(\mathbf{X} , house99).
 - Imagine a possible world (Prolog database):
 - dog(dog1). dog(dog2). dog(dog3).
 - came_into(dog3,house99).
 - Query:
 - ?- dog(X), came_into(X,house99).
 - -X = dog3
 - (6b) wanted(dog3, water).

Names = concealed descriptions

- (Section 5.4.1)
- Example:
 - (A) (Name) Confucius
 - (B) (*Definite Description*) the most famous Chinese philosopher
- Similarities
 - both seem to "pick out" or refer to a single individual

One important difference

- (B) tells you the criterion for picking out the individual
 - X such that chinese(X), philosopher(X), more_famous_than(X,Y), chinese(Y), philosopher(Y), \+ X=Y.
 - *is this characterization complete?*
- (A) doesn't
- we trust, in most possible worlds, computation gives us X = confucius

Also saw this earlier for "Shelby" and "the dog which lives at Paul's house

Names are directly referential

- (Section 5.4.2)
- Kripke: names are non-descriptive
- names refer to things from historical reasons (causal chain)
- **Example** (clear causal history):
 - Baby X is born
 - Parents name it Confucius
 - other people use and accept parent's name
 - gets passed down through history etc...
 - (actually not the best example to use...)
 - real name: Kong Qiu 孔子
 - styled as "Master Kong" = Confucius: 孔夫子

Names can change their referent

- (Section 5.4.3)
- A slight modification from Kripke
- Evans: social context is important
- Example:
 - Madagascar
 - originally: named part of mainland Africa
 - as a result of Marco Polo's mistake: the island off the coast of Africa
- Another example (possibly debunked):
 - kangaroo
 - "I don't understand" (aboriginal)
 - ganjurru (Guugu Yimidhirr word)
- Another example:
 - ono
 - "good to eat" (Hawaiian)

- Adjectives (Chomsky):
 - livid as in "livid with rage"
 - pale
 - red

Referential and Attributive Meanings

- (Section 5.4.4)
- Russell: definite noun phrases do not refer at all
- Example:
 - the teacher is nice
 - nice(teacher99). (directly referential)
 - there is exactly one ${\tt X}$ such that teacher(X), nice(X).
 - -

(attributive: no direct naming)

- On the attributive reading:
 - the = there is exactly one X such that
 - (i.e. "the" is like a quantifier)
- Which one is right and does it make any difference?

Referential and Attributive Meanings

- (Section 5.4.4)
- Donnellan: both are used
- Example 1:
 - Jones has been charged with Smith's murder
 - Jones is behaving oddly at the trial
 - Statement:
 - "Smith's murderer is insane"
 - referential or attributive use?
- Example 2:
 - everyone loves Smith
 - Smith was brutually murdered
 - Statement:
 - "Smith's murderer is insane"
 - referential or attributive use?

pick out Jones irrespective of whether he is innocent or not therefore, referential

Smith's murderer = whoever murdered Smith "quantificational" therefore, attributive

• (Section 5.5)

- Godehard Link: Lattice structure
- horse:
 - a property, i.e. horse(X) is true for some individuals X given some world (or database)
- **Example**: possible worlds (w1,..,w4)
 - (11) expressed as a mapping from world to a set of individuals
 - w1 → {A,B}

horse(a). horse(b).

• w2 \rightarrow {B,C}

horse(b). horse(c).

• w3 \rightarrow {A,B,C}

• w4 $\rightarrow \emptyset$

horse(a). horse(b). horse(c).

- Then
 - meaning of horse in w3 = {A,B,C}
 - meaning of horses in w3 = {A+B,A+C,B+C,A+B+C} (idea: sum)

- Example possible worlds (w1,...,w4):
 - (11) expressed as a mapping from world to a set of individuals
 - w1 \rightarrow {A,B}
 - w2 \rightarrow {B,C}
 - w3 \rightarrow {A,B,C}
 - w4 $\rightarrow \emptyset$
 - Then
 - meaning of *horse* in w3 = {A,B,C}
 - meaning of *horses* in w3 = {A+B,A+C,B+C,A+B+C} (**idea**: *sum*)
 - In Prolog database form:
 - W3: horse(a). horse(b). horse(c).
 - meaning of *horse*:
 - set of Xs that satisfies the query ?- horse(X).
 - or ?- findall(X,horse(X),List). List = [a,b,c].
 - meaning of horses?

- horse(a). horse(b).
- horse(b). horse(c).
- horse(a). horse(b). horse(c).

findall/3 **and** length/2

- [Introduced previously in lecture 17 slides]
- findall/3 **and** length/2
 - findall(X,P,List).
 - List contains each X satisfying predicate P
 - length(List,N).
 - N is the length of List
- Example:
 - ?- findall(X,dog(X),List), length(List,1).
 - encodes the definite description "the dog"
 - i.e. query holds (i.e. is true) when dog(X) is true and there is a unique X in a given world

Database (w3):

٠

- horse(a).
- horse(b).
- horse(c).
- horses(Sum) :-
- findall(X,horse(X),L),
- sum(L,Sum).
- sum(L,X+Y) :- pick(X,L,Lp), pick(Y,Lp,_).
- sum(L,X+Sum) :- pick(X,L,Lp), sum(Lp,Sum).
- $\quad pick(X, [X|L], L).$
- $\quad pick(X,[_|L],Lp) :- pick(X,L,Lp).$

- Query:
 - ?- horses(X).
 - X = a+b ?;
 - X = a+c ?;
 - X = b+c ?;
 - X = a+(b+c)?;
 - no
- Query:
 - ?- findall(X,horses(X),List).
 - List = [a+b,a+c,b+c,a+(b+c)] ?;
 - no

Homework 4

- Question 1 (8pts)
- (adapted from page 96)
- The proper meaning of horses associates a set of plural individuals with each possible world
- Convert the sample meaning for *horse* in w1,...,w4 in (11) into a meaning for *horses*
- Use Prolog
 - for each case, give database and relevant query and output

- Question 2 (4pts)
- Do the same conversion for w5 and w6 below:
 - w5 → {A,B,C,D,E}
 - w6 → {A,B,C,D,E,F}
- Question 3 (4pts)
- How would you write the Prolog query for "three horses"?
- Question 4 (4pts)
- How would you write the Prolog query for "the three horses"?

- We have:
 - meaning of horse in w3 = {A,B,C}
 - meaning of horses in w3 = {A+B,A+C,B+C,A+B+C}
- Lattice structure representation (w3):

three

Generalizing the lattice viewpoint

- *do we have an infinite lattice for mass nouns?*
- how do we represent mass nouns?
- Mass nouns: "uncountable"
- Examples:
 - gold (no natural discrete decomposition into countable, or bounded, units)
 - water
 - furniture *three furnitures
 - three pieces of furniture
 - (unit = one piece)
 - defines a bounded item which we can count

• Compare with:

- (English)
- does "horses" comes complete with pre-defined units?
- three horse-classifier horse (Chinese: sān pǐ mǎ 三匹马)
- three "units of" horse

three horses

• One idea:

- phrase meaning
- furniture furniture(X).
- piece of furniture
 furniture(X), X is bounded.
- three pieces of furniture requires X to be bounded
 - | furniture(X) | = 3, X is bounded.
- *three furniture | furniture(X) | doesn't compute
- Chinese: ma is like furniture, doesn't come with bounded property
- phrase meaning
 horses horses(X), X is bounded.
- three horses | horses(X) | = 3, X is bounded.