The Informative Role of WordNet in Open-Domain Question Answering

Marius Pa_ca and Sanda M. Harabagiu (NAACL 2001)

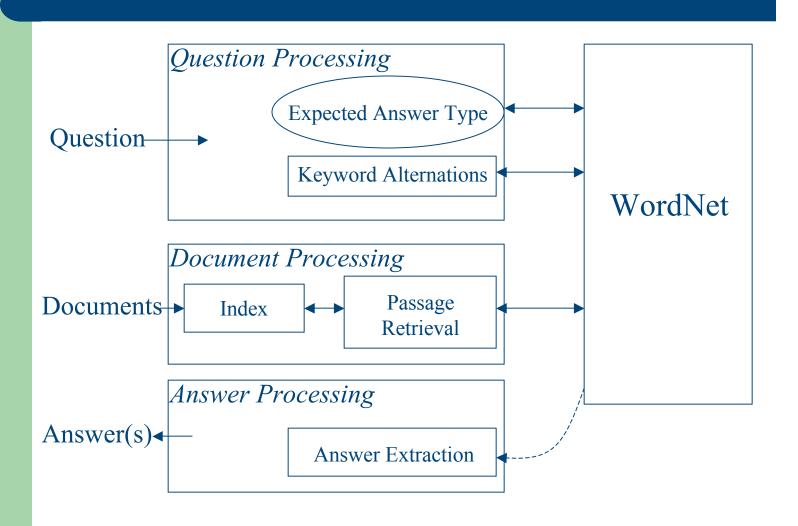
Presented by Shauna Eggers CS 620 February 17, 2004

Introduction

- Information Extraction: not just for keywords anymore!
 - Massive document collections (databases, webpages) require more sophisticated search techniques than keyword matching
 - Need way to focus and narrow search → improve precision
- One solution: Open-Domain Q/A
 - Find answers to natural language questions from large document collections
 - Examples:
 - "What <u>city</u> is the capital of the United Kingdom?"
 - "Who is the first private citizen to fly in space?"
 - Text Retrieval Conferences (TREC) evaluate entered systems;
 show that this sort of task can be performed with "satisfactory accuracy" (Voorhees, 2000)

Q/A: Previous Approach

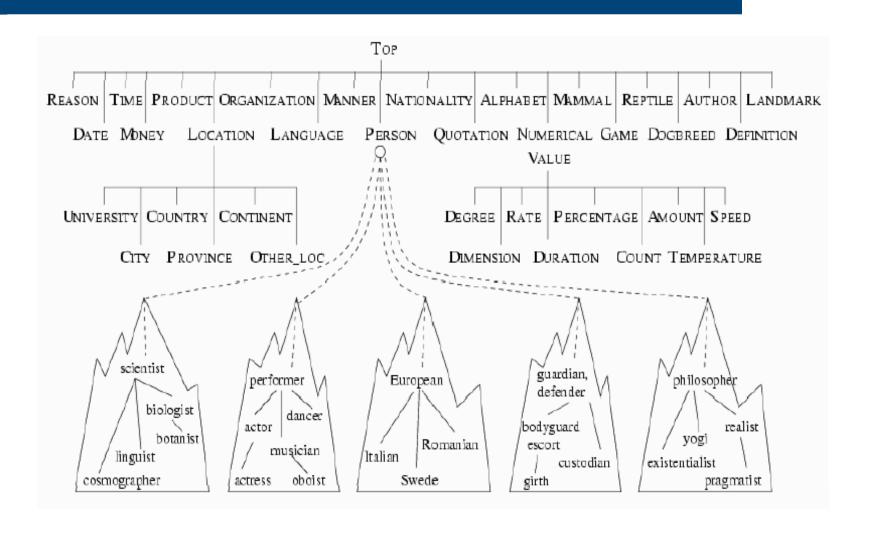
- Captures the semantics of the question by recognizing
 - expected answer type (i.e., its semantic category)
 - relationship between the answer type and the question concepts/keywords
- The Q/A process:
 - Question processing Extract concepts/keywords from question
 - Passage retrieval Identify passages of text relevant to query
 - Answer extraction Extract answer words from passage
- Relies on standard IR and IE Techniques
 - Proximity-based features
 - Answer often occurs in text near to question keywords
 - Named-entity Recognizers
 - Categorize proper names into semantic types (persons, locations, organizations, etc)
 - Map semantic types to question types ("How long", "Who", "What company")


Problems

- NE assumes all answers are named entities
 - Oversimplifies the generative power of language!
 - What about: "What kind of <u>flowers</u> did Van Gogh paint?"
- Does not account well for morphological, lexical, and semantic alternations
 - Question terms may not exactly match answer terms; connections between alternations of Q and A terms often not documented in flat dictionary
 - Example: "When was Berlin's Brandenburger Tor erected?" → no guarantee to match <u>built</u>
 - Recall suffers

WordNet to the rescue!

- WordNet can be used to inform all three steps of the Q/A process
 - 1. Answer-type recognition (Answer Type Taxonomy)
 - 2. Passage Retrieval ("specificity" constraints)
 - 3. Answer extraction (recognition of keyword alternations)
- Using WN's lexico-semantic info: Examples
 - "What kind of flowers did Van Gogh paint?"
 - Answer-type recognition: need to know (a) answer is a kind of flower, and (b) sense of the word flower
 - WordNet encodes 470 hyponyms of flower sense #1, flowers as plants
 - Nouns from retrieved passages can be searched against these hyponyms
 - "When was Berlin's Brandenburger Tor erected?"
 - Semantic alternation: erect is a hyponym of sense #1 of build


Interactions between WN and Q/A

WN in Answer-type Recognition

- Answer Type Taxonomy
 - a taxonomy of answer types that incorporates WN information
 - Acts as an "ontological resource" that can be searched to identify a semantic category (representing answer type)
 - Used to associate found semantic categories with a named entity extractor
 - So, still using an NE, but not bound to proper nouns; have found a way to map NEs to more general semantic categories
- Developed on principles conceived for Q/A environment (rather than as general onto principles)
 - Principle 1: Different parts of speech specialize the same answer type
 - Principle 2: Selected word senses are considered
 - Principle 3: Completeness of the top hierarchy
 - Principle 4: Conceptual average of answer types
 - Principle 5: Correlating the Answer Type Taxonomy with NEs
 - Principle 6: Mining WordNet for additional knowledge

Answer Type Taxonomy (example)

WN in Passage Retrieval

- Identify relevant passages from text
 - Extract keywords from the question, and
 - Pass them to the retrieval module
- "Specificity" filtering question concepts/keywords
 - Focuses search, improves performance and precision
 - Question keywords can be omitted from the search if they are too general
 - Specificity calculated by counting the hyponyms of a given keyword in WordNet
 - Count ignores proper names and same-headed concepts
 - Keyword is thrown out if count is above a given threshold (currently 10)

WN in Answer Extraction

 If keywords alone cannot find an acceptable answer, look for alternations in WordNet!

Q196: Who wrote "Hamlet"?

Morphological Alternation: wrote → written

Answer: before the young playwright has <u>written</u> Hamlet – and *Shakespeare* seizes the opportunity

Q136: Who is the queen of Holland?

Lexical Alternation: Holland → Netherlands

Answer: Pricess Margrit, sister of Queen *Beatrix* of the <u>Netherlands</u>, was also

present

Q196: What is the highest mountain in the world?

Semantic Alternation: mountain → peak

Answer: first African country to send an expedition to *Mount Everest*, the

world's highest peak

Evaluation

- Pa_ca/Harabagiu approach measured against TREC-8 and TREC-9 test collections
- WN contributions to Answer Type Recognition
 - Count number of questions for which acceptable answers were found; 3GB text collection, 893 questions

Method	# questions with correct answer type	
	All	<i>What</i> only
Flat dictionary (baseline)	227 (32%)	48 (13%)
A-type taxonomy (static)	445 (64%)	179 (50%)
A-type taxonomy (dynamic)	463 (67%)	196 (56%)
A-type taxonomy (dynamic + answer patterns)	533 (76%)	232 (65%)

Evaluation (2)

WN contributions to Passage Retrieval

Impact of keyword alternations

No alternations enabled	55.3% precision
Lexical alternations enabled	67.6%
Lexical + semantic alternations enabled	73.7%
Morphological expansions enabled	76.5%

Impact of specificity knowledge

Specificity	# questions with correct answer in		
knowledge	first 5 docun	5 documents returned	
	TREC-8	TREC-9	
Not included	133 (65%)	463 (67%)	
Included	151 (76%)	515 (74%)	

Conclusions

- Massive lexico-semantic information must be incorporated into the Q/A process
 - Using such information encoded in WN improved system precision by 147% (qualitative analysis)
- Visions for future:
 - Extend WN so that online resources like encyclopedias can link to WN concepts
 - Answer questions like: "Which classic rock group first performed live in Alburquerque?"
 - Further improve Q/A precision with WN extension projects
 - Eg, "finding keyword morphological alternations could benefit from derivational morphology, a project extension of WordNet" (Harabagiu et al., 1999)