

On the nature of FormSet

These slides

Sandiway Fong and	Masayuki Oishi
University of Arizona	Tohoku Gakuin University
email: sandiway@arizona.edu	oishi@mail.tohoku-gakuin.ac.jp

website: sandiway.arizona.edu/Keio2024.pdf

- some of these slides: FIND2023 workshop, Göttingen, Germany. Dec 2023
*Also: Jason Ginsburg, Hiroshi Terada and Masumi Matsumoto (OKU)

Human Language

- On Language, W. von Humboldt (1836):
- "Language is an involuntary emanation of the mind, no work of nations, but a gift fallen to them by their inner destiny."
- "Every language is produced by the original tendency or 'original talent' shared by all human beings."
- Chomsky (1964), Logical Basis of Linguistic Theory, cites Humboldt extensively.

Strong Minimalist Thesis (SMT)

- Language is 'optimal'
- Maximal operational simplicity is not only desirable wrt. the theory
- It's a necessity (for plausible evolution)
- It's a necessity (for biological computation: slow brain)

Merge

- Maximal simplicity doesn't necessarily mean "free" or fewer constraints (e.g. free Merge)
- Simple could be limiting options
- I-language is basically a thought-generating system (Chomsky MC)
- Following Duality of Semantics, there's a division of labor:
- External Merge (EM): form θ-configurations
- Internal Merge (IM): for other things
- Displacement

EM/IM must be defined not to explode search space (Minimal Yield), computational efficiency

- IM: Q-formation, Focus etc.
- (Chomsky) EXT: VP-fronting, Rightwards movement
- *IM : verbal head movement: unformulable (must be at EXT: Amalgamation)
- linear adjacency constraints cannot be expressed here either

Fact: Brain is slow

Computational efficiency (and bandwidth)

 are important considerations for all organic systems:our sensory apparatus can generate vast amounts of data (sensor mismatch)
a slow (chemical) brain limits what can be analyzed The War of Soups and Sparks (Valenstein, 2005) 19 ${ }^{\text {th }}$ century belief that neurons were electrically connected. Neurophysiologists believed only electrical transmission is fast enough to activate skeletal muscles. Mid-20 ${ }^{\text {th }}$ century: biochemical.
we (selectively) throw out/ignore almost all of the signal

Sensor/Brain Mismatch

- Sensor performance is incredibly good:
sensitivity down to the single photon level (Tinsley et al., 2016)
resolution (77 cycles/ ${ }^{\circ}$) (Curcio et al. 1990) within a factor of 3 of an eagle's
we don't need/use it for scene analysis
Other sensors:
olfactory thresholds at parts per billion (ppb)
(Wackermannová et al., 2016)
eardrums can detect tiny vibrations: down to the size of a hydrogen atom (Fletcher \& Munson, 1933)
brain doesn't need/use this either
90% of the area is peripheral vision: 50% of the nerve fibers fovea pit (0.2 mm diameter) 20/20 vision, color: 50%

Fig. 1.1. A drawing of a section through the human eye
with a schematic emargement of the retina.
Avians: eye architecture:

- one/two foveae (also denser)
- higher flicker fusion rates
- more types of cones

Sensor/Brain Mismatch

Use it or lose it!

- http://genomewiki.ucsc.edu/index.php/Opsin evolution: tri chromatic ancestral mammal
- Despite 100 million years of playing catchup, no [Therian] mammal has ever regained the superior sharp tetrachromatic color vision enjoyed by the amniote common ancestor and contemporary turtles, birds and lizards.
- It's possible to have much better color vision than human -- and many earlier diverging vertebrate species do.

https://doi.org/10.1098/rspb.2016.1208

Sensor/Brain Mismatch

Cephalopods vs. all vertebrates

- color-blind

Octopus

- but can restart development: re-generate eyes

Artificial Systems

- Problem also exists
- https://www.bbc.com/news/science-environment-68425211
- [Odysseus] had navigation issues whereby the onboard computer couldn't process precise laser range-finding data fast enough and had to rely solely on optical cameras for altitude and velocity information.
- Result: broke a leg ($30^{\circ} \angle$)

Merge

by the $3^{\text {rd }}$ Factor

- Operational Simplicity: Merge can't be free
- No record of Merge is kept (Markovian)
- "a paper trail" would be a memory device

History = horrible combinatorics Plus, too powerful, permitting island violations (Merge is memory-free)

- even Merge itself can't peek at prior Merges (never mind outsiders to Merge)
- also, Merge can't peek at relations computed at INT:
- e.g. Labeling (for INT to decode structure, EXT),
- FormCopy (affects EXT), etc.
- Oblivious Merge:
- Merge probing cannot refer to a Label (maybe probing is done later)

Merge

- Can't tell if structure is built by IM or EM
- because everything is an immutable set
- No Tampering with Merge inputs or output
(Tampering compromises maximal simplicity)
- Note: feature valuation doesn't count as Tampering
- No Deleting anything either ...
- Phrases have no room for extra baggage (memory)
- e.g. Labels or IM/EM-feature (\therefore Labels computed at INT/EXT)
- Duality would be nice, but cannot be detected (or enforced)
- must be designed in?
- \therefore irreducible
- Caveat: must distinguish output of FormSet (a set) from Merge (also a set) as different conditions apply.

Theta-aware Merge

- Chomsky (p.c.):
- Well, there are no marking for IM vs. EM.
- INT reads the computed structure and determines how to interpret identical inscriptions.
- That's true, but it doesn't mean that IM can't observe theta theory (and duality ...), crashing and hence cancelling the preferred derivation.
- Theta positions are detectable everywhere.
- [T] All relations and structure-building operations (SBO) are thoughtrelated, with semantic properties interpreted at CI. (Chomsky MC)
- Merge is θ-aware \& θ-driven:
- EM builds θ-configurations efficiently (as quickly and simply as possible)

Theta-aware Merge

- Efficiently as possible:
- \{XP, \{v*, \{R, XP\}\}\} most efficiently built by IM, but must be blocked.
- Banned by Duality
- cannot dispense with Duality
- External Merge (EM): select X, $Y \in$ WS
- arguably more efficient to select X twice
- But we don't see $\{X, X\}$ in language (same X)
- Don't see Agree(X, X) either
- Assumption: X and Y are distinct WS elements
- Chomsky (p.c.): one possibility might be Moro's analysis of copula, which derives "I am I/me" from \{be, \{I, I\}\}.

Efficient Merge and Minimal Search

Efficiently as possible

- External Merge (EM) (Chomsky p.c.):
- We assume that Merge like other operations observes it.
- That's why only members of WS, not their terms, are eligible for EM.

A Note on Combinatorics

- Operational Simplicity: Merge can't be freely applied
- $3^{\text {rd }}$ factor tied to biology: must be efficient
- How many ways are there to freely Merge two heads a and b ? (without Duality etc.)

- Example:

- Initial WS: a b
- 1 Merge (EM):
- \{a, b\}
- 2 Merges (IM):
- \{a, \{a, b\}\} \{b, \{a, b\}\}
- 3 Merges (IM):
- $\{\{a, b\},\{a,\{a, b\}\}\} \quad\{b,\{a,\{a, b\}\}\} \quad\{a,\{a,\{a, b\}\}\}$
- \{\{a,b\},\{b,\{a,b\}\}\} \{b,\{b,\{a,b\}\}\}\{a,\{b,\{a,b\}\}\}

A Note on Combinatorics

A Note on Combinatorics

A Note on Combinatorics

- Narrowing steps cannot involve clever devices:
- example: filtering out duplicate structures
- Violates SMT: requires a memory device
- need to know whether we've seen something before (Dynamic Programming)
- Language requires identical inscriptions (that have to be repetitions)
- Example (Chomsky):
- the man who saw many people didn't see many people

A Note on Combinatorics

- Example:
- the man who saw many people didn't see many people
- WS:
- \{ v^{*}, \{see, many people\}\}
- \{who man\} INFL $C_{r e l}$ the INFL Neg C
- Construct a relative clause e.g. following Cecchetto \& Donati (2015):
- \{the, $\left\{\right.$ man, $\left\{w h o\right.$ man, $\left\{C_{\text {rel }}\right.$, \{who man, $\left.\left.\left.\left.\left.\left\{I N F L, ~\left\{w h o-m a n, ~\left\{v^{*},\{s e e, ~ m a n y ~ p e o p l e\}\right\}\right\}\right\}\right\}\right\}\right\}\right\}\right\}$
- Now stuck!
- would need to invent a new operation to deep fish out $\left\{V^{*}, \ldots\right\}$ *SMT
- or subvert the Markovian assumption by reaching back into history of Merge
- violates Duality: only EM can introduce a theta role-bearing item

A Note on Combinatorics

- Narrowing steps cannot involve clever devices:
- Example: Infinite Loop Filter:
- $* \pi \pi$, where $\pi=\left(\mathrm{IM} O_{1}, \ldots, \mathrm{IM} O_{n}\right), n \geq 1$
- $\left(\mathrm{O}_{\mathrm{i}}=\right.$ selected subterm; cross- π compare selected $\left.\mathrm{O}_{\mathrm{i}}\right)$
- Example:
- \{a, b\}
- $\left\{\underline{a}_{1},\left\{a_{2}, b\right\}\right\}$
- \{a, $\left.\left.a_{1}, \underline{a}_{1},\left\{a_{2}, b\right\}\right\}\right\}$
- \{a $a_{1},\left\{\underline{a}_{1},\left\{a_{1},\left\{a_{2}, b\right\}\right\}\right\}$
- $\left\{\mathrm{a}_{1},\left\{\mathrm{a}_{1},\left\{\mathrm{a}_{1},\left\{\mathrm{a}_{1},\left\{\mathrm{a}_{2}, \mathrm{~b}\right\}\right\}\right\}\right\}\right\}$
and so on ... without violating MS

A Note on Combinatorics

Infinite Loop strategy:

$$
\text { select } a \text { and } b \text { alternately }
$$

- Example:
- $\{\mathrm{a}, \underline{b}\}$
- $\{\mathrm{b}$, \{a, b $\}\}$
- \{a, \{b, \{a, b\}\}\}
- \{b, \{a, \{b, \{a, b\}\}\}\}
- $\{a,\{\underline{b},\{a,\{b,\{a, b\}\}\}\}\}$ and so on ...

A Note on Combinatorics

- Proposed filter
- new device (unless loop-free computation is in the evolutionary toolkit) *SMT
- can't rule all cases anyway (see below)
- requires access to history of Merge (violates Markovian assumption)
- Example:
- WS: a b
- $\{a, \underline{b}\}$
- \{b, \{a, b\}\}
- $\{\{a, b\},\{b,\{a, b\}\}\}$
- $\{\{b,\{a, b\}\},\{\{a, b\},\{b,\{a, b\}\}\}\}$
- $\{\{a, b\},\{b,\{a, b\}\}\},\{\{b,\{a, b\}\},\{\{a, b\},\{b,\{a, b\}\}\}\}\}$ and so on ...

Use of Set Theory

- Limited use of set theory for representation:
- no \{\} (a true null)
- no infinite sets (sets are finite, but an infinite number of them)
- no union, intersection, difference, powerset operations
- e.g. $\{a, b\} \cup\{b, c\} \Rightarrow\{a, c\}$
- no equality (mathematics: equals means same)
- not a set, perhaps a multi-set (repetitions) (also the WS isn't a set)
- naïve set theory paradoxes seem not to apply
- $\{x: \mathrm{P}(x)\}, \mathrm{P}$ some property
- Russell's Paradox: suppose $\mathrm{P}(x)$ is $x \notin x$
- Barber Paradox: how does the barber shave (himself)?

Use of Set Theory

Axiomatic Set Theory

- e.g. Zermelo-Fraenkel (ZF) Set Theory
- axioms expressed in $1^{\text {st }}$ order logic $+\in$ (set membership)
- Axiom of Extension: same set if same members
- $x \in y$ iff $x \in z$ implies $y=z$ for all x
- doesn't hold for language
- we have "occurrences", possibly repetitions/copies

Use of Set Theory

UG: sub-phrases are unordered

- Set theory allows for the construction of ordered elements too
- Define $x<y$ iff $x \in y$
- Example:
- $a<b, a$ sequence $<a, b>=\{a,\{a, b\}\}$ (IM)
- $a<b<c,<a, b, c>=\{a,\{a,\{b,\{b, c\}\}\}\}$ (IM)
- Example:
- ordinals $\},\{\{ \}\},\{\{ \},\{\{ \}\}\}$, and so on ...
- generally, successor $(x)=x \cup\{x\} \quad$ (John von Neumann)
- $\operatorname{succ}(\})=\{ \} \cup\{\{ \}\}$
- $\operatorname{succ}(\{\}\})=\{\{ \}\} \cup\{\{\{ \}\}\}$
- but language doesn't count! (cf. artificial language: e.g. nth last word signals an interrogative)

Use of Set Theory

- Question:
- does anything block the formation of ordered elements in this model?
- Note 1:
- ordinal operation $\times \cup\{x\}$ not formulable under Simplest Merge (binary)
- e.g. $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\emptyset,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}$ cannot be constructed $(\varnothing=\{ \})$
- the above expression maps to 4 in \mathbb{N}.

Why?

- $\varnothing=0$
- $\{\varnothing\}=1$
- $\{\varnothing,\{\varnothing\}\}=2$
- $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}=3$

Use of Set Theory

- Note 2:
- the sequence <a, b, c> is represented by the set $\{a,\{a,\{b,\{b, c\}\}\}\}$

1) this set can be formed by iterated External Merge (EM) from WS:
$a \mathrm{a} b \mathrm{~b} \mathrm{c}$
$b c \Rightarrow_{E M}\{b, c\} \Rightarrow_{E M}\{b,\{b, c\}\} \Rightarrow_{E M}\{a,\{b,\{b, c\}\}\} \Rightarrow_{E M}\{a,\{a,\{b,\{b, c\}\}\}\}$
2) this set can also be formed from a minimal WS:
a b c
$b c \Rightarrow_{E M}\{b, c\} \Rightarrow \Rightarrow_{I M}\{b,\{b, c\}\} \Rightarrow \Rightarrow_{E M}\{a,\{b,\{b, c\}\}\} \Rightarrow_{I M}\{a,\{a,\{b,\{b, c\}\}\}\}$

- do these violate SMT?
- I-language builds thought objects only.
- Θ-configurations + other projections

Merge and FormSet

- Example:

1) (a) $\{$ like, Mary $\}$
(b) \{narrow, hallway\}
(c) \{long, hallway\}
predicative/substantive
EM: predicate-argument (AP)
(d) \{dark, hallway\}

- FormSet ($\{\ldots\}, \mathrm{n} \geq 2$) (Chomsky $G K$):

2) \{\{long, hallway\}, \{narrow, hallway\}, \{dark, hallway\}\}

- Need a nominal to head the NP:

3) \{hallway, \{\{long, hallway\}, \{narrow, hallway\}, \{dark, hallway\}\}\}
4) a long, narrow, (and) dark hallway (det PM (Oishi, 2015))

The Determiner

- Chomsky (p.c.):
- Is this External Merge?
- We're just ignoring functional elements, stick them in wherever you want.
- And, of course, you know there's lots of things to say about them, so why does the definite article appear before the noun?
- In fact, does the definite article even apply to the noun?
- Maybe the definite article's a feature of the noun phrase.
- Like in Semitic, for example, it's just distributed among the elements of the noun phrase.
- Hebrew:

5) ha-yeled ha-ze
'this child'

- Language-particular: attributive adjectives must agree in definiteness; and predicative adjectives are indicated syntactically, by the lack of an article in conjunction with a definite noun.

Concord and Agreement

- Adjectival Phrase:
- $\left\{\mathrm{A}, \mathrm{N}_{\text {¢. DEF }}\right\}$
- At EXT, there are options. Assume sisterhood between A and N .

1. $\left\{A, N_{\phi . D E F}\right\} N$ features expressed on A also (Concord)

- Example: Arabic
- al-rajul-u al-sa؟id-u
- DEF-man-NOM.SG.M DEF-happy-NOM.SG.M
- 'the happy man'

2. $D E F_{\phi} N_{\phi . D E F} N$ feature $D E F$ (definite) spells out as a word.

- Example: Hebrew
- ha-yeled ha-ze
- DEF-child. $\phi_{\mathrm{SG} . \mathrm{M}}$ this. $\phi_{\mathrm{SG} . \mathrm{M}}$
- 'this child'

FormSet

- Assume FormSet is generally available to computation
- cognition beyond I-Language
- Note: $\mathrm{n}=2$ not same as binary Merge due to different conditions
- Note: $\mathrm{n}=1$? logical possibility unavailable to binary Merge, arithmetic!
- Simplicity:
- members must be a coherent of set of syntactic objects (Chomsky)
- simplest formulation: all members must be treated the same
- members must obey some parallelism requirement for INT (and Merge)
- find example of parallelism, might be FormSet!
- Example

6) (a) \{\{long, hallway\}, \{narrow, hallway\}, \{dark, hallway\}\}
(b) \{hallway, \{\{long, hallway\}, \{narrow, hallway\}, \{dark, hallway\}\}\}

- operate in unison: IM one, same Merge ATB similarly

FormSet

- Case $\mathrm{n}=1$
- a logical possibility unavailable to binary Merge
- WS: x
- $\{x\}$
- $\{\{x\}\}$
- $\{\{\{x\}\}\}$
and so on
- generally, successor $(x)=\{x\}$

FormSet

- Chomsky GK (pg. 31):
- unbounded unstructured sequences (UUS's)

7) John, Bill, my friends, the actor who won the Oscar, ... ran, danced, took a vacation (respectively)

- FormSet ($\{\ldots\}$):

8) (a) $S_{1}=\{J o h n, ~ B i l l, ~ m y ~ f r i e n d s, ~ t h e ~ a c t o r ~ w h o ~ w o n ~ t h e ~ O s c a r\} ~$
(b) $S_{2}=$ \{ran, danced, took a vacation $\}$

- Members of S_{1} : referential similarity (but not NUM)
- Members of S_{2} : predicatehood
- S_{1} and S_{2} can have distinct cardinality (Chomsky GK fn. 47)

UUS: Relative clause stacking

Example:

9) the student who lives here who studies English whom I know

FormSet applies to:
10) (a) \{student, \{who \{student, \{lives here\}\}\}\}
(b) \{student, \{who, \{student, \{studies English\}\}\}\}
(c) \{student, \{who, \{I, \{know, student\}\}\}\}

- relative CPs need not be identical (Williams, 1978)

Optionally spelling out as:
11) the student who lives here, who studies English and whom I know

UUS: Relative clause stacking

[animation not visible in PDF version]

UUS: Relative clause stacking

- note 62: Fong \& Ginsburg. Open Linguistics, vol. 9, no. 1, 2023.

UUS: Relative clause stacking

the student who lives here who studies English whom I know

Spell-out:
the student who -s live -acc here who -s study -acc E
the student who live -s here -acc who study -s Englis the student who live -s here -acc who study -s Englis the student who lives here who studies English whor
One derivation found.

> Irrelevant: implementation details: could be Box Theory
> Important: Parallelism (members of a set treated uniformly)

Aside: are relations really computed?

UUS: Relative clause stacking

- Relative clause stacking parallel to PP stacking (Chomsky GK):

12) (a) John lived on a farm with his family
(b) John lived on a farm and with his family

- IM in unison, targets subject/object:

13) (a) Which book did John buy and read?
(b) which book did John buy which book and read which book
(c) $\left\{\left\{J o h n,\left\{v^{*},\left\{b u y\right.\right.\right.\right.$, which book\}\}\}, \{John, $\left\{\mathrm{v}^{*},\{r e a d\right.$, which book\}\}\}\}
14) (a) John arrived and met Bill
(b) $\left\{\{v\right.$, , arrive, John $\left.\},\left\{J o h n, ~\left\{v^{*}, ~\{m e e t, ~ B i l l\}\right\}\right\}\right\}$

Output of FormSet and the target of IM

- Identical inscription target requirement (Williams 1978):

15) (a) *Who and when did John see and ignore him?
(b) $\left\{\left\{J o h n,\left\{v^{*},\{\right.\right.\right.$ see, who $\left.\left.\}\right\}\right\},\left\{\left\{J o h n,\left\{v^{*}, ~\{i g n o r e, ~ h i m\}\right\}\right\}\right.$, when $\left.\}\right\}$

- FormSet :

16) (a) When and where did you see her?
(b) $\left\{\mathrm{C}_{\mathrm{Q}},\left\{\right.\right.$ you, $\left\{I N F L,\left\{\left\{\right.\right.\right.$ you, $\left\{\mathrm{v}^{*},\{\right.$ see, her $\left.\left.\}\right\}\right\},\{$ when, where $\left.\left.\left.\left.\}\right\}\right\}\right\}\right\}$

Adjectival and Predicative Noun Phrases

Example:

17) (a) the politician is greedy and a charlatan
(b) \{politician, \{be, \{\{greedy, politician\}, \{charlatan, politician\}\}\}\}

Similarly:
18) (a) \{hallway, \{\{long, hallway\}, \{narrow, hallway\}, \{dark, hallway\}\}\}
(b) the hallway is long, narrow and dark
(c) the long, dark and narrow hallway

- (Di Scuillo 2022) complex cardinals

19) (a) two hundred and two (additive complex)
(b) \{two hundred, two \}

FormSet: Agree

- Given the NTC, how does S-V Agreement or Case assignment work?
- phrases don't have features: (Minimal) Search (must) find heads only
- a big question: do these things happen in Merge Syntax or at the interface?
- Examples:

20) a. John, Bill, and the actor who won the Oscar are taking a vacation
b. $\mathrm{S}=\{$ John, Bill, the actor who won the Oscar\}

- NUM PL can't be found in set S

21) (a) John believes $\left\{\begin{array}{c}\text { you and me } \\ \text { me and you } \\ \text { ? I and you } \\ \text { you and I }\end{array}\right\}$ are going to the movies
(b) $\{$ you, I\}

- NUM PL intrinsic property of $\{$... $\}$
- Possessives: yours and mine / mine and yours
- Case is not relevant for Raising to Object?

FormSet: Agree

- Apparent D-N Agreement:

22) (a) this/*these man and woman
(b) *this/these men and women
(c) *this/*these man and women
(d) *this/*these women and man
(e) this man and these women \{this man, these women\}

- Agree must operate in unison across FormSet members
- EXT problem

Noun Phrase Formation

Recap:

23) (a) \{dark, hallway\}

EM: predicative-substantive
(b) \{\{dark, hallway\}, hallway\}
(c) a \{\{dark, hallw\}, hallway\}

Nominal head needed
Det
Unaccusative:
24) (a) \{arrive, train\}

EM: predicative-substantive
(b) $\{$ \{arrive, train\}, train\} Nominal head needed

- \{arrive, train\} must be EXT as an adjectival
(c) the arrived train / the train arrived
- (Radford 2009)

25) (a) the recently arrived train is the delayed 8:28 for London Euston
(b) the train arrived (at platform 4) is the delayed 8:28 for London Euston

- (Quirk et al. 1972):

26) (a) the visible stars / the stars visible (INT: "individual"/stage level predicate)
(b) the navigable river / the only river navigable during a drought

Noun Phrase Formation

- Causative/inchoative verb change:

26) (a) \{change, man\}
(b) \{prt, \{change, man $\}$

EM: predicate-argument
(c) $\{\{p r t$, change, man\}\}, man\} prt: passive particle (DbyP-style)
Nominal head needed

- EXT prt-change-man as changed
(d) A changed man
(e) A broken man

Noun Phrase Formation

Radford (2009): doesn't apply to transitives and unergatives:
27) (a) *The man committed suicide was a neighbour of mine
(b) *The thief stolen the jewels was never captured
(c) *The man overdosed was Joe Doe
(d) *The yawned student eventually fell asleep in class

Transitive predicate steal:
28) (a) \{thief, \{v*, \{steal, the jewels\}\}\} predicate-arguments
(b) \{\{thief, \{v*, \{steal, the jewels\}\}\}, thief\}

Nominal head needed

- perfectly fine thought, can’t EXT v*-steal-the-jewels adjectivally
(c) *The thief stolen the jewels (cf. the thief-stolen jewels)

Secondary Predication and FormSet

Both okay in English:
29) (a) paint green the red wall (resultative)
(b) paint the red wall green

- A puzzle for FormSet:

```
    30) (a) {red, wall} predicate-argument
    (b) {green, wall}
    (c) {{red, wall}, wall}} Nominal head needed
    (d) {paint, the {{red, wall}, wall}}}
    (e) {Peter, {v*, {paint, the {{red, wall}, wall}}}}}
    (f) {{Peter, {v*, {paint, the {{red, wall}, wall}}}}, {green, wall}}
```

- But:
(g) \{paint, \{green, \{the, \{\{red, wall\}, wall\}\}\}\} (compound predicate paint green)
(h) paint $\{\{\{r e d$, wall\}, \{green, wall\}\}, wall\} (paint the red and green wall)

Serial Verbs and Deverbal Noun Compounds

- Evidence for FormSet from Japanese predicates?
- Serial Verbs:
- binary: home-tataeru (admire-praise)
- ternary: oti-tuki-harau (fall-attach-brush.off) 'completely stay calm'
- Deverbal noun compounds:
- binary: tumami-gui (pinch-eating) 'eat with your fingers/to snack/go through partners one after another'
- ternary: naki-ne-iri (crying-sleeping-entering) 'refrain from complaining/put up with something without complaining'
- Note:
- argument sharing (need not be complete) between individual predicates required
- Valency Reduction compound predicate

Serial Verbs and Deverbal Noun Compounds

- Example [animated slide]:
- form an AP (θ-config.)
- NP must be headed by a nominal
- introduce (odtional) arguments
- buy IA2 (GEN Case-marked)
- push IA1 (GEN Case-marked)
- push-buy EA1/EA2 (GEN Case-marked)

Aggressive buying of pricey items from the elderly by unscrupulous businesses

